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ABSTRACT

This paper reviews the development of the ensemble Kalman filter (EnKF) for atmapheric data assimilation. Particdar attention is
devoted to recent advan ces and current challenges. The distinguishing properties of three well-established variations of the EnKF algorithm
are firstdiscussed. Given the limited size of the ensemble and the unavoidable exstence of errors whase oniginis unknown (Le, system error),
various approaches to localzing the impact of observations and to accunting for these errors have been proposed. However, challenges
remain; for example, with regard to localzation of multscale phenomena (both in time and space). For the EnKF in general, but higher-
resolution applications in particelar it is desirable touse a short sssimilation window. This motivates a focus on appraaches for maintaining
balance during the EnKF update. Also discussed are limitedarea EnKF systems, in particular with regard to the sssimilation of radar data
and applications to tracking severe storms and tropical cyclones. It seems that relatively less attention has been paid to optimizing EnKF
msimilation of satellite radiance o lservations, the growing volume of which has been instrumental in improving global weather predictions.
There 8 ako a tendency at various centers to investigate and implement hybrid systems that take advantage of both the ensemble and the
variational data assimilation approaches; this poses additional challenges and it is not clear how it will evolve. Itisconcluded that, despite
more than 10 years of operational experience, there are still many unresolved issues that could benefit from further research.
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PSU WRF-based multi-functional regional-scale
ensemble and hybrid data assimilation system

DA methods included:
PSU WRF-EnKF (Zhang et al. 2009a; Weng & Zhang 2012): publically released
NCAR WRFDA-3DVar (Huang et al. 2009): publically released
NCAR WRFDA-4DVar (X Zhang et al. 2014): publically released
E3DVar/3DenVar (hybrid/coupling of EnKF & 3DVar) (Zhang et al. 2013)
E4DVar (coupling of EnKF & 4DVar) (Zhang et al. 2009b; Zhang & Zhang 2012)
4DEnVar (ensemble-based 4D hybrid) (Liu et al. 2008; Poterjoy & Zhang 2016)

Current DA plans at the leading NWP centers:
ECWMF: adjoint-based as an ensemble of 4DVar but with hybrid covariance
UK-Met:. adjoint-based E4DVar in operation, better than ensemble-based 4DEnVar
NCEP: ensemble-based 4DEnVar
CMC: 4DEnVar for deterministic forecasts, EnKF for ensemble prediction



WRF-EnKF Performance Assimilating Airborne Vr

all 100+ P3 TDR missions during 2008-2012

Quasi-operational evaluation by NOAA/NHC since 2011 as stream 1.5 run
WRF-EnKF: 3 domains (27, 9, 3km), 60-member ensemble, PSU TC flux scheme
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(Zhang et al. 2011 GRL; Zhang and Weng, 2015 BAMS)



WRF-EnKF Performance w/ versus w/o Aircraft OBS
for HFIP/NHC selected RDITT cases w/o TDR during 2008-2012

WRF-EnKF: 3 domains (27, 9 , 3km), 60-member ensemble, PSU TC flux scheme
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Inter-comparison of E4DVar vs. EnKF & 4DVar for TCs
Deterministic forecast for Track & Intensity: w/ field sondes
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Inter-comparison of E4DVar vs. 4DEnVar and E3DVar
Deterministic forecast for Track & Intensity: w/ fleld sondes
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Predictability and Error Sources of TC Intensity Forecasts:
Lessons Learned from CHIPS 2009-2015
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Hurricane Edouard (2014)

Ensemble Track & Intensity

5 day forecast initialized
2014-09-11 12 UTC

Ensemble Track*
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Hurricane Edouard (2014) g, ingie-core mean to

Ensemble Mean - Physics behave similarly to a different

“APSU-Like” Physics model-core
- Physics configuration has a

Modify microphysics, radiation,

PBL, surface drag, cumulus leading influence
“HWRF-Like” Physics - More evident in intensity
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What is the Ultimate Limit of Midlatitude Weather Predictability?
It takes about 3 days for 10%EDA IC error run to grow to 100%EDA!
It takes about 1 days for 70%EDA IC error run to grow to 100%EDA

Error spectra of ECMWEF IFS member 1
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Ongoing collaboration with Linus Magnusson and Roberto Buizza at ECMWEF, Y.Q. Sun at PSU



State-of-the-Science: Importance of Cloudy and Precipitating Scenes

High FSO => real improvements in medium-range synoptic forecasts

Mechanism: 4D-Var can infer dynamical initial conditions from
observed WYV, cloud and precipitation

26-Feb-2015 to 13-Sep-2015 from 380 to 399 sam
Confidence range 95% with AR(2) inflation and Sidak
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New Generation of Geostationary IR Satellites
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High spatiotemporal resolutions:
> 10-15 minutes; 2-4 km




EnKF Performance assimilating simulated radiance

[ Truth versus EnKF-analyzed Infrared Radiance ]
of GOES-R ABI ch14 (11.2 um)

[2010 09-16_22:00]

Verifying truth EnKF analysis EnKF analysis
with radiance & with minimum
minimum SLP SLP only

(Zhang, Minamide & Clothiaux, 2016 GRL)



Adaptive Observation Error Inflation (AOEI)

Problem: erroneous analysis increments

[ If Model (clear / cloudy) # Observation (cloudy / clear) ]

125 hPa x K|
32 1 52[K?]

In updating SLP,

x 40[K] ~ 15[hPal

AOEI: inflating observation error variance

72_sopr = maz {2, [y — hi@))* = i, |

With AOEI. 12.5 [hQPa2>< K|
AOEI ag |k
suppresses erroneous analysis increments,
relieves the issues of representativeness & sampling,

& contributes to maintaining balance.
(Minamide & Zhang, MWR, 2017)

x 40[K] ~ 0.3[hPal



Adaptive Observation Error Inflation (AOEI)

GOES 13 Observatlon ]
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EnKF Performance W/ Assimilating Himawari-8 BT

Himawari-8 Infrared Channel (ch14: 11.2 ym)
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On going work with Masashi Minamide



EnKF Performance W/ Assimilating Himawari-8 BT

Himawari-8 Infrared Channel (ch14: 11.2 ym)
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Microwave Radiometers and Precipitation

Low-mid microwave freq. (37 GHz) High-mid mlcrwave freq (91.7 GHz)
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Hurricane Karl 09/17/10 0113Z
(SSMI/S image courtesy NRL)

MRain and cloud liquid net add to low MScattering by precipitation ice
emission by water dominates the signal

BMSome scattering by precipitation ice
On going work with Scott Sieron, Eugene Clothiaux and Yinghui Lu



Global IR coverage & ongoing GFS/GSI-LETKF OSSE
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Ongoing collaboration with Da Cheng and Eugenia Kalnay at UMD



PSU WRF-Chem-based EnKF carbon DA system

In the initial OSSE
experiment, we
assimilated the
truth at the
following tower
locations every 1
hour

Ongoing work with graduate student Hans Chen



21. MAIN TAIGA (2.9 %) 22. COOL CONIFER (5.3 % 23. COOL MIXED (1.1 %) o 27. WARM CONIFER (0.8 %)
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based on the Olson
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One a parameter is o
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Initial results from an idealized experiment
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Initial results from an idealized experiment

Dashed: Truth
Red: Initial guess
Blue: Posterior
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Initial results from an idealized experiment

Dashed: Truth
Red: Initial guess

Blue: Posterior
Blue shading:

Ensemble members
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PSR Towards Improved High-Resolution Land
v Surface Hydrologic Reanalysis

Using a Physically-Based Land Surface

Hydrologic Model and Data Assimilation
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Shi et al. 2014a, Journal of Hydrometeology

Shi et al. 2014b, Water Resources Research 26
Shi et al. 2015, Advances in Water Resources



PENNSTATE

® Coupled Hydro-Biogeochemistry
Data Assimilation & Parameter Estimatipn
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ESSPE: Ensemble-based Simultaneous State and Parameter Estimation

A generalized data assimilation software infrastructure for geoscience data-model integration
PSU PIs: F Zhang, L Li, S Brantley, W Brune, A Mejia, S Greybush & L Bao; NCAR PlIs: J Anderson, D. Gochis & J. Richter

Numerical Models

Example earth processes for demo
Watershed biogeochemistry

local watershed model: Flux-PIHM
reactive transport model: RT-Flux-PIHM
Hydrology & land surface

regional community model: WRF-Hydro
Atmospheric chemistry

box chemistry model: RACM2

regional chemistry model: WRF-Chem
Earth and climate systems

community earth system model: CESM
Selected user contributed models

PSU
EnDA

()

NCAR
DART

—
ESSPE

Observational Data
In-situ & remote-sensing measurements
radar, satellites,

towers, gauges, ...

ATMOSPHERIC CHEMISTRY &
COMPOSITION

C0,, 0, NO,, SO, PM2.5

Solar radiation
Evapotranspiration

LAND-SURFACE

1 0;, NO, Photosynthesis

INTERACTIONS
ECOSYSTEMS

HYDROLOGY

Statistical Computing Toolkits

algorithms [/O interfaces Modules

(EnKF, ...) || Dataprotocols || User guide
X =x! +K{y” —H,xf)

/

f x/ |€— State variables

< Model parameters

l K-PH(PH R |

Data-Model Integration and Uncertainty Quantification

Estimating key parameters
Identifying key processes

Integrated 4-D data analysis
Observing network design

f Leaf growth
— * C&Nallocation

P, Ca, Mg, ... C, N, P decomposition

GLEON

N, P uptake

USGS NEON

- Improving models and analyses: better physics parameterizations, integrated analysis & understanding of geoscience processes
- Better uncertainty quantification: parameter sensitivity, observability & distinguishability; observing network optimization; predictability
- Interconnect of geoscience community: sharing data, model, algorithm & software; cross-validation of model & data across disciplines

Key Expected Outcomes and Deliverables




Methodology & Algorithms
Data assimilation
Parameter estimation
Model error treatment
Ensemble generation

Probabilistic forecasting

Uncertainty quantification

Outreach &
Education

Demos & Testbeds
Community sharing

Cyberinfrastructure
Computing
Visualization
Data mining

Data acquisition Training & hosting

Data storage Penn State Center for Advanced Data Assimilation and
“BigData” Predictability Techniques

National partnerships

International
collaborations

Dynamical Systems and Disciplinary Sciences

Weather, climate, ocean, air/water/land chemistry and
pollution, ecosystem, earth system, oil reserve, storm surge,
mudslide, forest fire, earthquake, ...



UCADA

University-NOAA Consortium on Advanced Data Assimilation

Partner Universities: Pennsylvania State University (PSU), University of Maryland
(UMD), University of Oklahoma (OU) and University of Wisconsin (UW)

We propose to establish UCADA as a joint consortium between NOAA and
universities seeks to integrate and enhance the existing strength and expertise in
cutting-edge data assimilation (DA) research within and across operational and
academic communities. UCADA will not only foster collaborations between NOAA
scientists and university researchers, train the next-generation data assimilation
specialists, but will also champion the two-way interactive intellectual exchanges in
both research-to-operation (R20) and operation-to-research (O2R). The new R20 and
O2R interactive paradigms will facilitate rapid transition of new research
development from the academic community to NOAA operations while the university
researchers make concerted and direct efforts in seeking solutions to challenging DA
issues emerged from operations.



UCADA Objectives

Design and develop advanced and efficient DA algorithms for the next-generation
operational NWP models from global to convective scales building on the strengths of
the existing ensemble, adjoint and variational methods including various hybrids.

Implement these advanced methods with fast, efficient numerical solvers and parallel
computing capability under a community-consensus, object-oriented software
framework that will be suitable for the current and next-generation NWP models. A
potential candidate common DA software to be adopted is the one being developed at
the Joint Center for Satellite Data Assimilation (JCSDA).

Apply the advanced DA methods to assess the observability and predictability of
various dynamical systems of interest, to improve the accuracy and design of various
forecast systems, to assess the effectiveness and impact of the existing observing
networks, to design the most cost-effective future observing systems through observing
system simulation experiments and/or pilot real-time real-data predictions. A particular
emphasis will be existing and forthcoming observations from satellites including the
cloudy/rainy radiance data that are currently underutilized in operations.

Serve as an intellectual hub for facilitating collaborative research between NOAA and
universities, for attracting national and international visitors and scholars, for training
and preparing graduate students and postdocs to be the next-generation data
assimilation experts with strong ties to the operational communities, and as a testbed
for rapidly transferring research to operations.



