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Snow matters

1/6 of the world’s population

3/4 of Western U.S. water supply

1/3 of California’s water supply=⇒
300 crops + 1/2 of the nation’s fruits and nuts

Snow is life = Water + Food + Power + Recreation
(quoted from NASA snow workshop, 2016)
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Snow risks

High RiskLow Risk

Figure: Projections of decreased potential for snowmelt water to supply human
water demand by 2080. (Mankin et al., 2015 Environmental Research Letter)
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Objective and Methodology

Goal: Better characterize snow water equivalent
(SWE) and snow depth across regional and
continental scales.

Study domain: North America

Methodology: Data assimilation (DA) approach —
Ensemble Kalman filter (EnKF) =⇒ 1D-EnKF

Merge observations and model estimates
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DA Formulation
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Figure: A conceptual representation of the update step in the EnKF, where the
superscript i is the ith replicate in the ensemble.
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Forward model

NASA Catchment model, forced
by Modern-Era
Retrospective-Analysis for
Research and Applications
(MERRA)

three-layer snow model

25-km Equal-Area Scalable
Earth Grid (EASE-Grid)

initialize when seasonal snow
cover at minimum
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Passive microwave observations

Advanced Microwave Scanning
Radiometer EOS (AMSR-E)

measures passive microwave
emissions (i.e., brightness
temperatures (Tb))

from 01 September 2002 to 01 July
2011

multi-frequency (10 GHz, 18 GHz,
and 36 GHz), multi-polarization (H
pol., and V pol.) Tbs

25-km Equal-Area Scalable Earth
Grid (EASE-Grid)
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Passive microwave observations over snow covered land
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Figure: Radiance emissions from the surface at 36 GHz at either H. pol or V. pol.
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Relationship between SWE and ∆Tb

Soil

Snow

(dry)
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18
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   first-order

approximation: ∆Tb ⇑,
SWE (or snow depth) ⇑
similar approximation for
∆Tb = Tb10 - Tb36

longer wavelength,
deeper snow information
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Assimilated Observations

All ∆Tbs (at both H and V pol.) contain SWE information,
leading to synergistic effects when all observations are assimilated

Joint assimilation 

ΔTb
18H - 36H

ΔTb
18V - 36V

ΔTb
10H - 36H

ΔTb
10V - 36V

Medium to 

deep snow

Shallow to 

medium snow

All four ΔTb

combinations
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Observation operator
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Figure: A conceptual representation of the machine learning algorithm based ∆Tb
prediction framework.
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Others Terms in the EnKF Formulation

Ensemble size: 40

Perturb precipitation, shortwave radiation, and longwave
radiation

∆Tb observation error: ∼ N (0, 3K) =⇒ same for all four
channels

SWE is the only state variable in the EnKF update

Other snow-related modeled states were adjusted accordingly
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SVM-DA evaluation

Model-derived results vs. ground-based stations
National Water and Climate Center Snow Telemetry (SNOTEL) SWE
SNOTEL snow depth
NOAA Global Summary of the Day (GSOD) snow depth
USGS daily and cumulative discharge

Model-derived results vs. available snow products
Canadian Meteorological Centre (CMC) snow depth
AMSR-E SWE
European Space Agency (ESA) GlobSnow SWE

**Note: Model-derived results:
(1) open-loop derived (OL; without assimilation) ensemble mean
(2) data assimilation derived (DA; with assimilation) ensemble mean
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DA experiment results (Example)
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DA reduced the bias by ~56% (from 0.13m to 0.05m) in SWE relative to OL;

DA reduced the RMSE by ~37% (from 0.18m to 0.11m) in SWE relative to OL;

Figure: Comparison of OL-derived, DA-derived SWE and snow depth estimates,
and estimates obtained from various snow products against colocated
ground-based SNOTEL, and GSOD observations.
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DA experiment results (Example)
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DA reduced the bias by ~56% (from 0.13m to 0.05m) in SWE relative to OL;

DA reduced the RMSE by ~37% (from 0.18m to 0.11m) in SWE relative to OL;

On average, slight improvements (relative to OL) were witnessed in
DA experiments via comparison against ground-based stations (not
shown).
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Comparison against USGS discharge

Normalized information contribution (NIC) (Kumar et al., 2009)

NIC > 0: DA outperforms OL

NIC = 0: DA is comparable to OL

NIC < 0: DA degrades OL

13 major USGS gauged basins in Alaska (> 625 km2, with at least
two consecutive years of measurements record)

% of basins NICs > 0 NICs < 0

vs. daily discharge 68.3% 31.7%
vs. cumulative discharge 84.7% 15.3%

Relatively good snow estimates obtained from DA (relative to OL)
also has the potential to translate into improved runoff estimates.
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Comparison against snow products

Snow 
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Figure: Comparison between OL, DA, and various snow products on 16 March
2003 in Alaska (Example).
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Comparison against snow products

Snow 
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AMSR-E SWE
product
underestimates SWE

Compared with OL,
DA moves closer to
CMC and GlobSnow
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Comparison against snow products
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Comparison against snow products

Temporally-averaged estimates differences in Alaska, from 2002 to
2011

Domain-averaged mean difference OL DA
± standard deviation [m]

vs. CMC snow depth 0.023±0.468 0.003±0.460
vs. GlobSnow SWE 0.013±0.055 0.008±0.051
vs. AMSR-E SWE 0.034±0.110 0.030±0.108

Comparing against AMSR-E SWE product, there is no significant
difference between OL and DA

Comparing against GlobSnow SWE product, DA SWE reduced the
difference by 38% (relative to OL)

Comparing against CMC snow depth product, DA snow depth
reduced the difference by 87% (relative to OL)
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Filter sub-optimality assessment

Normalized innovation (NI) sequence

NI sequence approximates white noise =⇒ “optimal” assimilation

Violation of assumptions: nonlinear observation model operator
+ nonlinear model dynamics + non-Gaussian model errors

Domain-averaged 10H-36H 10V-36V 18H-36H 18V-36V

NI [-] 0.00 0.03 -0.04 -0.02
σNI [-] 1.56 1.46 1.16 1.14

higher σNI : might underestimate observation errors and/or forecast
errors
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Conclusions and Future directions

SVM can serve as an efficient and effective observation model
operator within a radiance assimilation system.

Investigate the effects of removing non-SWE related signals from the
observations prior to integrating into the DA (IGARSS, July 2017)

Compare model derived results with satellite-based terrestrial water
storage information

Conduct feasibility test of the current DA system on assimilating
other satellite-based Tb observations
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Thank you and Acknowledgment

Thank you!

Financial support was provided by the NASA Earth and Space
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Additional slides
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Cases where no analysis increments occurred

No SVM (i.e., summertime, ocean)

Error covariance between Catchment-SWE and SVM-Tb are zeros for
all frequency combinations

No Tb observations (i.e., 09/13/2002-09/19/2002,
10/30/2003-11/05/2003, 11/19/2004, 11/17/2005, 11/18/2006,
11/28/2007, 02/03/2010-02/04/2010, 01/26/2011)

(Tb obs. + obs. error - Tb forecast) == 0 for all frequency
combinations

Strong radio frequency interference (RFI) hotspots (Tb @ 6 GHz - Tb
@ 10 GHz < -10K, if happens > 20% of the entire time series)

Invalid value of snow temperature, snow specific heat content, snow
depth after re-distributing SWE into three layers

Non-land grids (i.e., contain land ice or significant water bodies)

Innovation is too large [innovation**2 < (fac ** 2) * (2 * R)], R=4
K2 or 9 K2, fac=5, innovation max = 14 K or 21 K
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Why to assimilate radiance?

Avoid inconsistencies in the use of ancillary data between the
assimilation system and pre-processed geophysical retrievals

e.g., soil or vegetation conditions
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Why to assimilate radiance?

What SWE observations (which SWE observation product) to use for
assimilation?

point-sale SWE observations from ground-based stations (maybe yes,
maybe no)
AMSR-E SWE product (x)
ESA SWE product (x)

How to evaluate the SVM-SWE-DA work if assimilating point-scale
SWE observations?

Compare with ground-based SWE observations itself (x)
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Why not bring LAI into SVM training?
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Figure: A modified conceptual representation of the machine learning algorithm
based SWE prediction framework with LAI as the input.
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Why not bring LAI into SVM training?

Go back to the “Godilocks” graph... trade-off between SWE
sensitivity and prediction accuracy

Model complexity ⇑, SWE sensitivity ⇓, close-to-zero Kalman gains, no
update will take place

Different from SWE, snow temperature etc., LAI is an 8-day product,
which barely has day to day variations (i.e., step-function-like)
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Why to select SVM with four input states?

Arti�cial 

Neural 

Network

SVM

Figure: Comparisons of machine
learning algorithms in SWE sensitivity.
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Are the state-of-the-art snow products really
state-of-the-art?

Q: If we have already got these state-of-the-art snow products, why
do you still need DA to improve your model estimates?
We call these snow products as “state-of-the-art” because many
previous studies use these products as their references
Comparison against snow products become more useful at regions
without in-situ observations
“state-of-the-art” products do not equal to “perfect” products

ESA GlobSnow SWE product does not have estimates at high
mountains
CMC SWE product has a fixed snow density everywhere
CMC snow depth product assimilate in-situ dataset from WMO directly
without considering whether the ground-based stations are
representative of the 24km resolution grids
AMSR-E SWE product has significant negative bias

Our efforts to integrate model estimates with observations are useful
— new global snow product
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How to compare model results with point-scale
observations?

In-situ obs.

EASE Grid #1

EASE Grid #2

EASE Grid #3
EASE Grid #4

EASE Grid #586*1383

... ...

...
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...

Figure: A conceptual representation of the comparison scheme used in SVM-DA
evaluation.
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Computational time

Training procedure is independent of Catchment model run

Training time varies as a function of the sample size (large domain vs.
small domain; winter vs. summer)

Using fortnight 01 (01 Jan to 14 Jan) in Quebec and Newfoundland,
Canada as a example, 2914 Catchments, 9 year (2002 - 2011)

Training time: ∼6-7 hours (6 cores)
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Computational time

Run time: ∼12-20 hours (1 core) — one pixel (from 2002 to 2011)

Run time: ∼1.5-2.0 days (20 cores) — North America (per year)
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Soil effects in SWE retrieval?

Not too sensitive to soil water content (> 10 GHz)

The use of a spectral difference algorithm is assumed to minimize
many of the errors in the retrieval, such as the dielectric constant of
the soil, and the soil surface roughness. (Clifford et al., 2002)

Error bars for each (LAI-transmissivity) pair account for soil effects
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NICs computation

NICRMSE = RMSEOL−RMSEDA

RMSEOL

NICNSE = NSEDA−NSEOL

1−NSEOL

Kumar et al., 2009, 2014
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Thank you!

Questions and/or Comments?
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