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What	are	passive	microwave	
brightness	temperature	
(radiance)	observations?



COLD WARM

Hurricane Karl 09/16/10 2315Z
(GOES-13 IR, image courtesy NRL)
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(GOES-13 VIS, image courtesy NRL)
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What	are	microphysics	
parameterizations?
(in	mesoscale	weather	models)



Bulk	Microphysics	Schemes
• Categorize	different	physical	states	of	water	(hydrometeor	species)
• Prescribe	each	species	a	particle	size	distribution	form
• Predict	one	or	more	physical	quantities	that	relate	to	a	moment	of	
the	particle	size	distribution

• “Single-moment:”	predict	mass
• “Double-moment:”	predict	another	quantity	such	as	number	concentration

• Interaction	of	species	are	specified	by	functions	of	predicted	physical	
quantities



How	Bulk	Schemes	Can	Differ	– Snow	PSD
Goddard (Lang	et	al.	2007)	
𝑁" 𝐷" = 𝑁%,"𝑒()*+*	with	𝑁%," 𝑚(. / 𝑚(0 = 1.6×106and

𝜆"[𝑚(0] = :;*<=,*
;>?*

0 @⁄

WSM5/6	(Hong	et	al.	2004)
𝑁" 𝐷" = 𝑁%,"𝑒()*+* with	𝑁%," 𝑚(. / 𝑚(0 = 2.0×10C𝑒%.0D D6..0E(F , 𝑤𝑖𝑡ℎ	𝑇 𝐾 	𝑤ℎ𝑒𝑟𝑒	𝑁%," ≤ 1000and

𝜆O[𝑚(0] = :;P<=,P
;>?P

0 @⁄
, 𝑤ℎ𝑒𝑟𝑒	𝜆" ≤ 10E

Morrison	(Double-Moment;	Morrison	et	al.	2009)

𝑁" 𝐷" = 	𝑁%,"𝑒()*+* with	𝑁%," [𝑘𝑔
(0
/ 𝑚

(0
] = 𝑁"𝜆"and	

𝜆"[𝑚(0] =
𝜋𝜌"𝑁"
𝑞"

0 .⁄

, 𝑤ℎ𝑒𝑟𝑒	
1

2000.0×10(C ≤ 𝜆" ≤
1

10.0×10(C
Thompson	(Double-Moment;	Thompson	and	Eidhammer 2014)

𝑁" 𝐷" = ℳV
W

ℳXX
κ%𝑒((ℳV ℳX)\ ]=+ + κ0

ℳV
ℳX
𝐷

_*
𝑒((ℳV ℳX)\ ]`+ ,	with	ℳn the	nth	moment	of	PSD



How	Bulk	Schemes	Can	Differ	– Snow	PSD
Goddard (Lang	et	al.	2007)	
𝑁" 𝐷" = 𝑁%,"𝑒()*+*	with	𝑁%," 𝑚(. / 𝑚(0 = 1.6×106and

𝜆"[𝑚(0] = :;*<=,*
;>?*

0 @⁄

WSM5/6 (Hong	et	al.	2004)
𝑁" 𝐷" = 𝑁%,"𝑒()*+* with	𝑁%," 𝑚(. / 𝑚(0 = 2.0×10C𝑒%.0D D6..0E(F , 𝑤𝑖𝑡ℎ	𝑇 𝐾 	𝑤ℎ𝑒𝑟𝑒	𝑁%," ≤ 1000and

𝜆"[𝑚(0] = :;*<=,*
;>?*

0 @⁄
, 𝑤ℎ𝑒𝑟𝑒	𝜆" ≤ 10E

Morrison	(Double-Moment;	Morrison	et	al.	2009)
𝑁" 𝐷" = 𝑁%,"𝑒()*+* 	with	𝑁%,"[𝑘𝑔(0 / 𝑚(0] = 𝑁"𝜆"and	

𝜆"[𝑚(0] =
𝜋𝜌"𝑁"
𝑞"

0 .⁄

, 𝑤ℎ𝑒𝑟𝑒	
1

2000.0×10(C ≤ 𝜆" ≤
1

10.0×10(C
Thompson	(Double−Moment;Thompson	and	Eidhammer 2014)

𝑁" 𝐷" = ℳV
W

ℳXX
κ%𝑒((ℳV ℳX)\ ]=+ + κ0

ℳV
ℳX
𝐷

_*
𝑒((ℳV ℳX)\ ]`+ ,	with	ℳn the	nth	moment	of	PSD

• Temperature-dependent	
intercept	parameter

• Upper	limit	on	slope	parameter
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• Upper	and	lower	limits	on	slope	parameter
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• Much	more	complex…



The	Community	Radiative	
Transfer	Model	(CRTM)
And	Effective	Radius



Basics	of	CRTM	Operation

• Input:
• Vertical	profile	of

• Temperature
• Pressure	(also	vertical	discretization	variable)
• Water	vapor
• Cloud	water,	pristine	cloud	ice,	rain,	snow,	graupel,	hail

• Water	content	(kg	m-3),	effective	radius	(μm)
• Surface	composition,	temperature	and	wind

• Surface	wind	à geometry	of	water	surface	à water	surface	emissivity
• Sensor	and	viewing	angle

• Output:	Brightness	Temperature

obtain	from	
weather	model	
output



Effective	Radius

• A	scalar	representation	of	the	sizes	of	particles	in	a	cloud
• The	community	defines	effective	radius	as

𝑟abb =
∫ 𝑟.𝑁 𝑟 𝑑𝑟�
�
∫ 𝑟D𝑁 𝑟 𝑑𝑟�
�

• This	is	“mean	radius	for	scattering”	for	scattering	by	a	particle	∝ 𝑟D
(Hansen	and	Travis	1974)

• For	a	monodisperse	PSD,	𝑟abb is	the	radius	of	the	particles
• For	generalized	gamma	PSD,	𝑟abb = (𝜇 + 3)𝜆(0

𝜆"[𝑚(0] =
𝜋𝜌"𝑁%,"
𝜌i𝑞"

0 @⁄



CRTM	Effective	
Radius	(cont.)
• For	precipitation	in	microwave,	
scattering	by	a	particle	is	NOT	∝ 𝑟D

• This	assumption	works	for	particles	
much	greater	than	wavelength

• Most	mass	are	in	particles	less	than	
or	close	to	wavelength

• Particle	size	<<	wavelength	(radar):
scattering	∝ 𝑟C

• Therefore,	effective	radius	does	not	
represent	scattering	between	
different	particle	size	distributions	
with	inherent	accuracy

Black: scattering coeff. (m2 kg-1)
Dashed: absorption coeff. (m2 kg-1)
Blue: sample particle mass distribution

(kg m-3 µm-1) of graupel-like ice spheres

Light blue: wavelength
Red: one-sixth wavelength

WSM6 graupel at 
1.24 g m-3



• “Distribution-Specific”:	scheme-
specific	cloud	single-scattering	
property	lookup	tables

• Integrating	the	product	of	
microphysics-specified	particle	mass	
distributions,	and	particle	radiative	
properties

Microphysics	Scheme-Consistent	CRTM

Black: scattering coeff. (m2 kg-1)
Dashed: absorption coeff. (m2 kg-1)
Blue: sample particle mass distribution

(kg m-3 µm-1) of graupel-like ice spheres



Testing	the	CRTM	– WRF	Simulations

• Hurricane	Karl	(2010),	initialized	at	21Z	16	Sept.	from	PSU	WRF-EnKF
analysis	after	assimilating	airborne	Doppler	radar	radial	velocities

• Ensemble	size:	60
• WSM6	microphysics
• Inner-domain	grid	spacing:	3	km

• 3-hour	forecasts,	each	with	a	different	microphysics	scheme
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Microphysics	Scheme-Consistent	CRTM

• Greater	differences	in	TB between	MP	schemes	using	CRTM-DS
• Differences	in	PSD	are	fully	resolved	

• Bias	to	observations
• CRTM-DS	too	cold	at	low	and	mid	frequencies,	matches	well	at	higher	
frequencies

• CRTM-RE	too	warm	at	higher	frequencies	(did	not	show),	matches	well	at	low	
and	mid	frequencies

• Caused	by	using	the	scattering	properties	of	spheres?



Non-Spherical	Particle	Scattering



About	Non-Spherical	Particles

• Database	from	
Guosheng Liu	(2008	
MWR)

• Optical	properties	
simulated	by	
Discrete	Dipole	
Approximation	
(DDA;	Draine and	
Flatau 1994)
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Particle	Density



Particle	Density

In	what	ways	does	particle	(bulk)	density	impact	simulated	
brightness	temperatures?
• WRF	model
• Particle	mass	distribution
• Radiative	properties	for	a	particle	of	a	given	size/mass

What	are	the	significance	of	each	of	these	influences?
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WSM6 control
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Final	Thoughts

• CRTM	modified	to	have	cloud	scattering	properties	in	microwave	
consistent	with	microphysics	schemes

• Demonstrates	the	variety	in	particle	size	distributions	between	schemes

• A	tool	for	further	research:
• Support	and	study	several	more	microphysics	schemes
• Understand	sensitivities	to	particular	species	by	changing	parameter	values
• Assimilate	observations	for	improved	tropical	cyclone	forecasts


