
Ideas	for	alleviating	GSI	computer	limitations

David	F.	Parrish1 and	Rahul	Mahajan2

1 NOAA/NWS/NCEP/Environmental	Modeling	Center
2 IMSG

1



2

Computational	limitations	for	GSI

In	this	short	presentation,	I	will	discuss	two	specific	
computational	limitations	in	the	GSI	code.		
1) Significant	additional	run	time	(~2-5	min)	was	

added	to	global	and	regional	GSI	due	to	change	
of	format	for	global	ensemble	members	from	
spectral	coefficients	to	NEMS	format	grid	files.

2) GSI	is	limited	to	O(400)	processors	for	parallel	
computing,	primarily	because	of	how	the	
background	error	covariance	is	computed.

We	already	have	a	fix	for	item	1,	which	is	now	in	
operations	for	global	and	regional	GSI.		Item	2	is	
much	more	challenging.
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Computational	limitations	for	GSI

1) Significant	additional	run	time	(~2-5	min)	was	
added	to	global	and	regional	GSI	due	to	change	
of	format	for	global	ensemble	members	from	
spectral	coefficients	to	NEMS	format	grid	files.



4

NEMS	format	global	ensemble	input	more	
expensive	than	spectral	for	3d/4d	EnVar GSI

Essentially	the	same	code	was	used	to	read	global
spectral	format	ensemble	for	both	global	and
regional	runs.

The	read	was	done	one	ensemble	member	at	a
time.		Reading	was	done	in	parallel	over	all
processors,	with	every	processor	reading	in	a	single
horizontal	variable/level,	and	all	processors
simultaneously	reading	from	the	same	ensemble
file.		

Not	so	bad,	since	read	contention	was	likely	masked
by	significant	computation	to	convert	from	spectral
to	grid	independently	on	every	processor.
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global	ensemble	input	very	expensive	
for	3d/4d	EnVar GSI

In	operations,	the	use	of	spectral	files	for	GFS	has
been	replaced	by	NEMS	format	grid	files.		This	is
now	operational	for	global	and	regional	GSI.

A	nemsio version	of	the	ensemble	read	routine	for
global	model	now	exists	in	GSI,	which	reads	grid	files
instead	of	spectral	files.		The	initial	version
increased	run	times	substantially,	which	could	not
be	improved	by	adding	more	processors.		

The	new	fast	ensemble	read	saves	2-5	minutes	of
run	time	compared	to	the	first	version.		It		is
now	operational	for	both	global	and	regional	GSI.
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global	ensemble	input	very	expensive	
for	3d/4d	EnVar GSI

Rahul	learned	about	this	new	method	for	faster	
read

of	the	global	gridded	ensembles	from	a	meeting	late
in	2016.		Mark	Buehner presented	results	where
256	ensemble	members	were	read	in	and	scattered
to	subdomains	in	O(5)	seconds.		This	was
accomplished	by	simultaneous	reads	of	256	entire
members	by	256	processors,	followed	by	a	scatter	

to
subdomains	on	all	processors.
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global	ensemble	input	very	expensive	
for	3d/4d	EnVar GSI

Here	are	some	run	times	for	parallel	NEMS	global	gfs
(now	operational	with	fast	read—thanks	to	Russ
Treadon for	gathering	this	data).

Luna (development):
60 nodes:
360 tasks, 
ptile=6, 
threads=4.

Surge (operational):
240 nodes 
480 tasks, 
ptile=2,
threads=12.
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global	ensemble	input	very	expensive	
for	3d/4d	EnVar GSI

Reduction	in	times	for	parallel	NEMS	global	gfs
(original	- fast	read)					
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Computational	limitations	for	GSI

2) GSI	is	limited	to	O(400)	processors	for	parallel	
computing,	primarily	because	of	how	the	
background	error	covariance	is	computed.
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Background	error	

The	current	operational	global	GSI	is	4denvar,	but	
the	background	error	B	is	still	the	same,	so	is	
illustrated	with	this	basic	3dvar	cost	function:

J(x)=	!
"
	[	xTB-1x +	(Hx - y)TR-1(Hx - y)	]

where
x =	xa – xb ,	xa =	analysis,	xb =	background,
y =	yo – H(xb)	,	yo = observations,
H =	observation	forward	operator,
H = tangent	linear	of	H,
B = background	error	covariance,
R = observation	error	covariance.
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Background	error	

The	analysis	increment		x	is	determined	by	a	
conjugate	gradient	minimization	iteration		(up	to	
250	total	iterations	for	global	GSI).		Each	iteration	
requires	the	matrix-vector	multiplication	Bx.			B	is	
implemented	in	the	horizontal	using	a	recursive	
filter	(Wu	et	al,	2002).		This	algorithm	requires	the	
entire	horizontal	field.		This	is	why	there	is	an	upper	
limit	of	O(400)	processors	for	parallel	computing.		
The	operational	x	contains 6		3d	variables	with	64	
layers	each	and	2		2d	variables,	for	a	total	of	386		2d	
fields.
Wu,W.-S.,	D.	F.	Parrish,	and	R.	J.	Purser,	2002:	Three-dimensional	variational analysis	with	
spatially	inhomogeneous	covariances.		Mon.	Wea.	Rev.	,	130,	2905–2916.
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Background	error

Above	submitted	to	2017	WGNE	Blue	Book:
This	is	a	new	application	of	the	recursive	filter	
specifically	to	the	FV3	gnomonic	cube	sphere.		I	
asked	Jim	if	this	could	be	applied	in	a	subdomain	
context.		He	didn’t	think	so,	but	the	6	faces	could	be	
extended	with	overlap	to	adjacent	faces.

Covariance operators on the equiangular gnomonic cubic grid,
R. James Purser, Miodrag Ranˇci´c, Manual de Pondeca, and David F. 
Parrish,  NOAA/NCEP/EMC, College Park, MD 20740-3818, U.S.A. 
(Email: jim.purser@noaa.gov)

A	proposal	for	Bx on	FV3	cube	grid	
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Background	error

Above	submitted	to	2017	WGNE	Blue	Book:
I	suppose	that	this	could	allow	6	streams	of	
computation	across	6	processors	per	variable,	so	the	
number	kept	busy	would	be	O(2400)	processors.		
This	would	be	a	significant	advance,	with	a	method	
similar	to	what	is	already	used	in	GSI,	so	has	good	
probability	of	success.		Also,	it	can	still	be	made	bit	
reproducible	for	different	number	of	processors.	

Covariance operators on the equiangular gnomonic cubic grid,
R. James Purser, Miodrag Ranˇci´c, Manual de Pondeca, and David F. 
Parrish,  NOAA/NCEP/EMC, College Park, MD 20740-3818, U.S.A. 
(Email: jim.purser@noaa.gov)

A	proposal	for	Bx on	FV3	cube	grid	
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Background	error

One	of	us	(Parrish)	created	a	single	processor	
multigrid	algorithm	for	direct	computation	of	Bx.
This	was	applied	to	the	RTMA	option	of	GSI	and	
seemed	to	give	good	results	and	ran	a	little	faster	
when	RTMA	runs	in	full	horizontal	slab	option.		
However,	RTMA	uses	the	anisotropic	version	of	
recursive	filter,	which	can	also	run	on	subdomains.		
It	is	very	heavily	communication	bound,	but	the	
existing	subdomain	form	runs	faster	than	both	the	
horizontal	slab	version	and	the	multigrid	Bx.

Subdomain	version	of	Bx?
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Multigrid correlation algorithm:

To compute  w = Cu  using the hierarchy of M grids :

Fine to coarse  pass:

u1 = u,          (C1 = C)   (don’t compute this—not  practical)

do m = 2, M
um = Hm

T um-1 (adjoint of centered polynomial interpolation from fine to  
end do                          coarse grid—adjoint needed to preserve

symmetry of C)

wM = CM uM (direct computation by full CM — only  O(n) elements in CM
— in implementation n_used << n !)

Coarse to fine pass:

do m = M-1,1,-1
wm = Hm+1 wm+1 + Em um (forward polynomial interpolation 

end do                                         and correlation correction term)



16

Multigrid correlation algorithm:

Hm interpolates from  um to um-1 using  centered polynomial interpolation

Em = Cm - Hm+1 Cm+1 Hm+1
T

Em is the matrix of interpolation error between the exact correlation at level m 
and the interpolated correlation from level m+1.  In general, Em is a full matrix, 
but by setting an error tolerance  Ɛ  which is related to the discretization error 
on the finest grid, the actual matrix will be very sparse. 

Interpolation orders  and tolerances used in tests:    

1st , 3rd , 5th , 7th order   ( 2, 4, 6, 8 points respectively)

Ɛ = 0.01, 0.001, 0.0001
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Correlation function used:

C(x1,x2,f1,f2)= exp [ - |x2 – x1|2 / (Lxy ( x1 ) L xy( x2 )) - ((f2 – f1) / Lf) 2  ]

inhomogeneous isotropic      Riishøjgaard anisotropic
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Anisotropic example:

521	x	521	grid			Riishøjgaard coupled	correlation.		Test	point	every	40	grid	points	in	x	and	y,	194	
samples	all	together.		Green	contours	are	for	field	that	the	correlations	follow.		Black	contours	are	0.1,	
0.3,	0.5,	0.7,	0.9.		Correlation	computed	to	accuracy	of	0.01	with	cubic	interpolation	grid	transfers.		
Cost	to	setup	information	needed	for	multigrid	algorithm:		214	seconds.		Cost	for	v	=	C*u	:	0.07	
seconds.		Clearly	need	to	work	on	the	setup	cost.
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Background	error

A	new	investigation	is	underway	to	see	if	a	practical	
subdomain	version	of	the	multigrid	Bx algorithm	can	
be	created.		As	a	simpler	alternative,	a	non-multigrid	
subdomain	version	is	also	being	considered.		It	is	too	
soon	to	know	if	either	of	these	will	be	practical	
alternatives.		As	EMC	is	committed	to	the	FV3	
model,	the	recursive	filter	application	on	gnomonic	
cube	sphere	may	end	up	being	the	practical	way	
forward.				

Subdomain	version	of	Bx?
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Questions?			


