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Airfoils	at	high	angles	of	aOack	

Separated	flow	at	a	high	angle	of	aOack	(Source:	
Wikipedia)	
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AOached	flow	at	a	low	angle	of	aOack	(Source:	
www.grc.nasa.gov)	

Understanding	the	current	
state	of	the	flow	field	and	
prominent	flow	structures	
is	crucial	for	improved	
performance	at	high	
angles	of	a+ack	



Computa*onal	Fluid	Dynamics	Simula*on	

•  Angle	of	aOack	=	45	degrees;		Re	=	5000	



Mo*va*on	for	es*ma*on	research	
•  Control	objec*ve:	liT	maximiza*on/regulariza*on		

	
•  Flow	es*ma*on	and	control	research	has	previously	extracted	only	

a	few	features	of	a	flow	for	use	in	flow	control	applica*ons	(e.g.,	
phase	informa*on	for	an	oscillatory	flow,	etc.)	

•  In	this	applica*on,	liT	greatly	depends	on	the	shedding	of	the	
periodic	vortex	structures,	so	it	may	be	important	to	es*mate	the	
full	flow	field		

•  Recent	advances	in	operator	theore*c	es*ma*on	and	control	
approaches,	such	as	using	the	Koopman	operator	and	Dynamic	
Mode	Decomposi@on	(DMD),	allow	for	simple,	reduced-order	
models	of	highly	nonlinear	dynamics	

Result:	It	may	be	possible	to	use	high-fidelity	fluid	mechanical	
models	in	real-@me	es@ma@on	and	control	loops	



Outline	

1. DMD	and	the	Koopman	operator	
2. Sparsity-promo*ng	DMD	for	a	
reduced-order	model	

3. DMD-based	Kalman	filtering:		
Flow	over	an	airfoil	



Dynamic	Mode	Decomposi*on	(DMD)	

•  Originally	formulated	in	the	fluids	literature	(Schmid	2010),	subsequently	
generalized	(Tu	et	al.	2014)	

	
•  Look	for	the	best-fit	linear	operator	that	marches	the	system	forward	

(N+1) !
Snapshots !
of !
data!

Vector fields from PIV, 
CFD, other discrete 
time data such as 
pressure signals, etc.!

(Tu	et	al.	2014)	

Principal	Orthogonal	
Decomposi*on	
(POD)	modes	
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DMD	in	POD-basis	subspace	

•  If	the	state	dimension	is	large,						may	be	intractable	
to	form	

•  Search	for																		,	a	version	of						projected	on	the	
POD	basis	of	snapshot	matrix		

•  Op*miza*on:	

A

A

(Jovanović	et	al.	2014)	
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Snapshot	reconstruc*on	with	DMD	modes	

•  Eigendecomposi*on	of	

	
•  Snapshot	dynamics	

Ã = Y ⇤ZH

A = UÃUH =) A = UY ⇤ZHUH

, VMatrix	of	DMD	modes	

Matrix	of	DMD	eigenvalues	

Scaled	version	of	Y	so	that		
ZHY = I

qk+1 = Ãqk

 k ⇡ Uqk
 k ⇡ U(Y ⇤ZH)kUH 0

= V ⇤kZHUH 0

= V ⇤k↵ Vector	of	weigh*ng	coefficients	
dependent	on	ini*al	condi*on	

(Jovanović	et	al.	2014)	



Koopman	operator	

•  Nonlinear,	discrete-*me	dynamics:	

•  Koopman	operator	(B.	O.	Koopman	1931)	

•  Infinite-dimensional,	linear	operator	that	
pushes	forward	an	observable	func*on	under	
the	dynamics	

xk+1 = Ft(xk)

yk = g(xk)

(Kutz	et	al.	2016)	

Kt gj(xk) = gj(Ft(xk)) = gj(xk+1)



Koopman	operator	(cont’d)	
•  Spectral	representa*on:	

	
	
	
•  Itera*vely	applying	the	Koopman	operator	and	eigenfunc*on	rela*ons	

Kt �j = �j�j for j = 1, . . . ,1

Koopman	eigenfunc@on	

Koopman	eigenvalue	

Koopman	mode	
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(Kutz	et	al.	2016)	



Koopman-DMD	Connec*on	

(Rowley,	Mezic	et	al.	2009,	Mezic	2013)	

g(xk) =
1X

j=1

vj�
k
j�j(x0)

DMD	Koopman	

 k ⇡ V ⇤k↵

Consider	only	a	finite	number	of	modes	

g(xk) ⇡
mX

j=1

vj�
k
j�j(x0)

In	finite	dimensions,	write	in	matrix	form	

g(xk) ⇡ V ⇤k
�(x0)

DMD	provides	numerical	es@mates	of	the	Koopman	modes	and	Koopman	eigenvalues.		
The	weigh@ng	coefficients	are	the	Koopman	eigenfunc@ons	at	the	ini@al	@me.	

Correspondences	
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•  Select	the	“most	important”	modes	for	a	reduced-order	model	
•  Reduced-order	model:			
•  Reconstruc*on:	Need	to	solve	for	the	vector	of	weigh*ng	coefficients	

(DMD	mode	amplitudes)		

•  Observa*on	from	prac*ce:		Using	only	a	few	of	the	largest	modes	does	
not	always	lead	to	the	best	reconstruc*on!	

Reduced-order	modeling	with	DMD	
(Rowley,	Mezic,	et	al.	2009)	
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=
(�

j
)

<(�j)

kv
j
k

(V,⇤)

↵ Matrix	containing	e-values	
raised	to	powers	

Diagonal	matrix	containing	↵

minimize
↵

J(↵) = k � V D↵Vandk2F



Step	2:	Amplitude	“polishing”	Step	1:	Op*mize	sparsity	structure		

Sparsity-Promo*ng	DMD	(SPDMD)	
•  Which	modes	should	be	included	in	a	reduced-order	model?	

–  SPDMD	automa*cally	chooses	the	most	relevant	modes	and	their	
amplitudes	

–  Example	result:		

•  Two-step	op*miza*on	process:	

minimize

↵
J(↵)

subject to ET↵ = 0

minimize
↵

J(↵) + �
rX

j=1

|↵j |

(Jovanović	et	al.	2014)	

Scalar	weigh@ng	
factor	

l1 norm
Matrix	enforcing	
sparsity	structure	

↵ =
⇥
. . . 0, 0, a, 0, 0, . . . 0, 0, b, c, 0, 0, . . .

⇤T



SPDMD	results	on	flow	over	airfoil	

•  The	SPDMD	result	is	a	series	of	graphs	for	various	regulariza*on	values	
from	which	one	may	choose	the	modes	to	retain	

•  Each	point	on	the	curve	has	a	corresponding	polished	set	of	mode	
amplitudes	
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SPDMD-model	mode	1	of	5	

(Vor*city	field	suppressed	for	clarity)	



SPDMD-model	modes	2,3	of	5	

(Vor*city	field	suppressed	for	clarity)	



(Vor*city	field	suppressed	for	clarity)	

SPDMD-model	modes	4,5	of	5	



Reconstruc*on	of	simula*on	

Original	simula*on	 Reconstruc*on	using	5	of	372	modes	



DMD-based	Kalman	filtering	experiment	

•  Distributed	pressure	sensors	along	the	suc*on	side	of	the	
airfoil	

•  Performed	CFD	simula*ons	of	ground	truth	and	corrupted	the	
sensor	signals	with	addi*onal	white	noise	(5%	signal	mean	
value)	

(Pressure	sensor	loca*ons	on	NACA0012	airfoil)	



Extrac*on	of	Koopman	informa*on	

•  Using	CFD	simula*ons,	create	a	training	data	set	
•  Arrange	state	variables	and	outputs	in	composite	snapshots	

•  Perform	SPDMD	calcula*on	
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Reduced-order,	linear	models	from	DMD	

•  Key	observa*on:		View	Koopman	eigenfunc*ons																	
as	a	transforma*on	of	the	state	vector	

	
•  Separate	the	Koopman	modes	into	state	and	output	

por*ons	

•  Note:	The	signals	are	complex-valued,	so	a	complex	filter	
is	necessary.		Otherwise,	handle	real	and	imaginary	
components	separately	with	care	(see	Surana	and	
Banaszuk	2016)	
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To	transform	back:	
Resul*ng	linear	system:	



Pressure	measurement	filtering	results	

Ground	truth	simula*on	 Filtered	es*mate	using	5	mode	model	

•  Ini@al	transient	required	before	es@mate	converges	
•  Es@ma@on	of	phase	and	magnitude	of	vortex	shedding	well-captured	

•  SPDMD	permits	rapid	es@ma@on	with	reduced	model	complexity;	this	
approach	could	contribute	to	real-@me	control	in	future	work	



Ongoing	work:	Experimental	implementa*on	

Tow	tank	in	the	lab	of	Prof.	Anya	Jones	NACA	0012	wing	model,	courtesy	of	Phil	Kirk	

Sec*on	with	embedded	
pressure	sensor	array	

Par*cle	Image	Velocimetry	(PIV)	data	collec*on	

Objec@ve:		Perform	DMD-based	
Kalman	filtering	in	real-@me,	
using	Koopman	modes	learned	
from	simula@on.		Compare	offline	
to	es@mate	to	the	ground	truth	
flow	field	collected	using	PIV.	



Conclusion	

•  Koopman/DMD	perspec*ve	has	proven	to	be	a	
promising	approach	for	es*ma*on	of	the	flow	
behind	a	thin	airfoil	at	high	angles	of	aOack	in	
simula*on	

•  Ongoing	work:	
–  Experimental	implementa*on	
– Observability-based	sensor	placement	

•  Future	work:	
– DMD-based	real-*me	feedback	control	for	liT	
regulariza*on	

This	work	is	supported	by	the	Na3onal	Science	Founda3on	under	award	no.	
CMMI-1362837.	


