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Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model
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New Data Assimilation: We can also use DA
to improve observations and model
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
L

Combine optimally observations and model forecasts
(mostly done! ©)

* We should also use DA to:
Improve the observations

Improve the model
* |Improve the models by parameter estimation

Example: Estimate the surface carbon fluxes as evolving
parameters.

e Earth system models used by IPCC have many sub-models, but
they don’t include the Human System, with the feedbacks that
totally dominate the Earth system.

We should do DA of the two-way coupled Earth System-
Human System, and use DA for parameter tuning




LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot




LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

The LETKF algorithm can be described in a single slide!



Local Ensemble Transform Kalman Filter (Hunt et al, 2007)

Globally: ;
X' =M (x" )
Forecast step: .k AN
Analysis step: construct Y’ — [xf _x? ... |x/}( _ i/’];

y, =AY =y -y |y -¥]

Locally: Choose for each grid point the observations to be used,
and compute the local analysis error covariance and
perturbations in ensemble space:

P =[(K-)I+Y'R'Y| ;W' =[(K - 1)P]"

Analysis mean in ensemble space:W* = P‘'Y "R (y° - ")
and add tow“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
X’ = XﬁW" + X Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are
analysis weights W’ and perturbation analysis matrices of
weights W°. These weights multiply the ensemble forecasts. |



1) Improve the observations: Ensemble Forecast

Sensitivity to Observations and Proactive QC

I EC"mhnm——
e Kalnay et al. (2012) derived EFSO.

 Otaetal.(2013) tested 24hr GFS forecasts and showed
EFSO could be used to identify bad obs.

 D. Hotta (2014): EFSO can be used after only 6 hours, so
that the bad obs. can be collected and withdrawn, with
useful metadata, so they can be improved. The analysis
is corrected with EFSO.

* We call this Proactive QC, much stronger than QC.
e Hotta also showed EFSO can be used to tune R

e Tse-Chun Chen tested impact of EFSO/PQC over 5 day
forecasts: VERY PROMISING RESULTS




Forecast Sensitivity to Observations (Langland and Baker, 2004)
FSOI in Global NWP

Met Office
Total Observation Impact (Aug 2014) Fraction Obs that Improve Forecast
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Offline Experiment: 18 cases

MTE relative improvement (%)
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* PQC corrects analysis and
the subsequent forecast.

* All three methods
improves model forecasts

Oon average.

* The AUS and Threshold
method have forecast
improvements larger than

Hotta method.




Alarm bells could be produced in operations! {7}

« EFSO allows QC monitoring (Kalnay et al 2012)

« MODIS and Profiler Winds frequently detrimental
* |t would accelerate implementing new instruments
* Jordan A, Krishna and T-C Chen collaborating!
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Danforth and Kalnay (2007, 2008a, 2008b)

* Danforth, Kalnay and Miyoshi (DKM-2007)
estimated the 6hr errors of the SPEEDY model.

* Estimated the average SPEEDY model error
(bias) by averaging:
Reanalysis R1 — 6 hour forecast = Al
* They corrected the SPEEDY model with AL/ 6Ar

* This significantly improved both the forecasts
systematic errors and the random errors!



Both bias and random errors were significantly smaller
when correcting the model with the model bias!

Original Model Online Correction

Jan 1986-1990, uwnd [m/s] 1dy Random Error  Jan 1986-1990, uwnd [m/s] 1dy Improvement
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The 2 leading EOFs of the error anomalies gave the diurnal cycle errors



Can we estimate and correct model bias and
random forecast errors in the NCEP/GFS?

Kriti Bharﬁavai E Kalnaxij Carton

* The systematic errors in the GFS (and all NWP
models) are not negligible.

* They are statistically corrected a posteriori
(offline).

 We aim to correct the GFS (online) adding the
average Al/6hr to each forecast variable, like
Danforth and Kalnay (2008).

* This should not only improve the forecasts but
also facilitate testing model improvements.

* |f the observations are biased, correcting them
should reduce the Analysis Increments



Systematic model errors — GFS
Thanks to Glenn White

Systematic error range ~1/3 Total error range
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First results: 2014 Analyses, Forecasts and Bias

S u rfa ce Te m pe ratu re Temperature January(above) and July (below) monthly mean(K) at Omb Ja nua ry

Analysis Forecast - Analy5|s Increament
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Analysus Forecast J u Iy - AnaIyS|s Increament

220 235 250 265 280 295 310 -09 -06 -03 0.0 0.3 0.6 0.9

The analysis and 6hr forecasts are almost identical,
but the Al are well defined.



Seasonal Mean Bias: T (K) at “850 mb for 2012, 2013, 2014
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DIURNAL ERROR: First 4 vs 120 modes: P, (mb)

First 4 EOFs of Al capture the diurnal cycle errors almost perfectly
Top: 4 modes Sept’14
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Bottom: 120 modes

(e) Al 00 hr mean (f) Al 06 hr mean (h) Al 18 hr mean




13

Bias 1s independent of resolution: 1t 1s large scale

Al 2013 at T254 Al 2014 at T254

Projecting
July 2014
mean
Temperature
Al at T62
(top), T126
(middle)
and original
T254
(bottom)
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Errors reduced from 2014 to 2015, 2016 over ocean$
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Findings (Kriti Bhargava)

e Estimate the GFS systematic mean errors v/

* Check the robustness of the seasonal averaged Al: (2012 vs
2013 vs 2014)v Errors are robust

* Find errors in diurnal cycle v/

* Check if the low dimensional approaches can be used to
correct the diurnal cycle errors. v Yes, need only 4/120
modes and should be able to correct the diurnal cycle!

* Check if errors can be explored at a resolution lower than
operational. v' Yes, the errors project on low wave numbers
<<T62 (large scales)

e |n 2015-2016 the errors over ocean were smaller: We traced
this to the replacement of weekly OI SST with daily high
resolution Real Time Global RTG SST. v/



2 week average Al for 6-hr control 2 week average Al for 6-hr
forecast corrected forecast
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Temperature at 850hPa:
Correcting “online” with Al/6hr reduced the Al’s!
We still need to correct surface pressure



New opportunities for
new reanalyses

Eugenia Kalnay
With
Yan Zhou and Junye Chen
for the correction of analysis jumps



Why do we get reanalysis jumps? Model bias!

, s S + Observations
l Model 1 /
\ /

S o P Climatological bias

No observations. The
model climatology has a
large bias.

Some observations added,
e.g. pre-satellite era. The
bias decreases abruptly,
with a jump.

Many observations, e.g.

Imperfect .
model satellite era. Each new
observing system reduces
T the bias with a jump
l Perfect model without bias.
Perfect No jumps when even more
model observations are added

A schematic of “climate jumps” associated with observing system changes

* The climatological bias between the forecast model and the nature decreases
with a jump when a new observing system was assimilated.

* The purpose of Yan Zhou’s dissertation is to find a solution to minimize the
“climate jumps” associated with observing system changes.

Yan Zhou, AOSC UMD Ph.D defense on December 8t", 2014



Example: MERRA global mean precipitation

Global mean precipitation
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Global monthly mean precipitation (mm/day) time series for MERRA (green),
several other reanalyses, and GPCP and CMAP (black) (Chen et al., 2012)

* Jumps in the MERRA global mean precipitation time series appeared
simultaneously with introducing or ceasing different types of satellite
observations, like SSM/I and ATOVS (red arrows)

Yan Zhou, AOSC UMD Ph.D defense on December 8t", 2014



How can we minimize the jumps when we add

new observing systems? (Yan Zhou'’s thesis)
I amanemmmeemem—eees

* Yan Zhou tested 3 methods:
N=with new obs; O=only old obs
AIE Analysis with New obs, First Guess with New obs

AL Analysis with Old obs, First Guess with New obs
— DKM2007:  Aln— Alw BEST
— MERRA: Alx — Al, N BETWEEN

— Climatology: An—A, WORST



Whitaker, NOAA CTB Meeting, November 9-10, 2015:
Differences between reanalvses for

climate monitoring and reforecasts

* For climate monitoring, homogeneity of
climate statistics is paramount.
— If needed, sacrifice accuracy for homogeneity (by
limiting observation platforms assimilated).
* For reforecasts, homogeneity of forecast
errors is paramount.

— If needed, sacrifice homogeneity of climate
statistics by including all possible observing
systems (in order to keep forecast error statistics

as close as possible to real-time system)

Our proposed approach addresses both problems!



How can we minimize the jumps when we add
new observing systems? (Yan Zhou'’s thesis)

* The best method she found (DKM2007) can be easily
carried out during the reanalysis:

* When starting a new obs system, for 1-2 years:
— Compute the New Al (with new obs system)

— Compute the Old Al (without the new obs system but using
the same first guess as the New Al)

— Time average of (New Al-Old Al)= AAI=New Al-0Ild Alnewro

— This is the correction in the model bias introduced by the
new observations.

* This should be added to the reanalysis done before the
introduction of the new observations.

* |t should minimize the reanalysis jumps.

* Cheaper than doing two reanalyses with and without
new obs (the “MERRA approach).




IViore accurate analysis by using

future and past data
(Yun Li, Kalnay, Zeng)

4D-LETKF

No-cost smoother: The weights are valid throughout the window.

The original analysis uses only past data. The cross corrects it by using
the final weights. Since it uses both past and future data, it should be
significantly more accurate than the original analysis (like second order
differences compared to first order differences).



Summary

 We should take advantage of the opportunities that
advanced DA provide!

e Estimate and correct the jumps introduced by new
observing systems

* The best method is DKM2007 (Yan Zhou’s thesis).
The correction can be trained in 1-2 yrs. Low cost.

* Proactive QC: capture and delete flawed
observations that survived the regular QC.

* Use no-cost smoother to improve the analysis at the
beginning of the time window using future
observations.

* Do strongly coupled data assimilation and apply
similar ideas.




