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Motivation

= Observations are not perfect fit to model or real atmosphere, due to

* |Instrument error
* Representativeness
* Observation operator

Imbalance in analysis

= imbalance in initial conditions (dynamical inconsistency)

|

= Production of fast moving gravity waves which degrades the forecast.

Balances and the relationship between variables need to be
properly represented in order to produce a skillful forecast.




Incorporating Balance

= Var approach
e Strong constraints
* Weak constrains

— Additional penalty in the cost function (Courtier and Talagrand, 1990;
Gauthier and Thepaut, 2001; Wee and Kuo, 2004)

— Application of balance operator I and apply variable localization
(Lorenc et al., 2003; Parrish and Derber, 1992; Wu et al., 2002)

*" Ensemble approach

* Underlying assumption: dynamical estimation of the correlation
maintains balance.

* Challenge: Spatial localization to suppress spurious sampling errors
— using the same length scale for all variables

— balanced and umblanced variables may have different correlation
length scale.



Objectives

®= Formulate ensemble data assimilation with balance operator using variable
localization as in 3D/4D-Var

= Demonstrate the interference of balance operator with
* Model-space spatial localization

* Observation-space spatial localization

= Evaluate the impact through the OSSEs using SPEEDY model



Practical Data Assimilation

= Representation of uncertainty by error covariance matrix
* Background given by forecast): x° with B
* Observation with known y=h(x): y° with R

= Optimization (in incremental form: Ax = x — xP using d=y° -h(x®)

J(AX) = %AXTB_1AX + 1(d —HAX) R™'(d—HAXx)
\ v J v y,
Background (Forecast) Observations

H: Linearized obs operator h(x)

* Variational methods (3DVar, 4DVar) = numerically solve for Ax

* Sequential methods (Ol, EnKF) = use analytical form of Ax
= Analysis
— State: Ax? = Kd

— Error covariance: A=(l-KH) A with K=BH'(HBH™+R)!
or K=AHR! with A=(B1+H™RIH)?



Balance Operator

= Provides multivariate correlation in B [control variable localization] based

on physical relationship

= Conventionally present in Var schemes through the empirical regression

coefficients

Following Wu et al (2002)
AX = AXY + Axbalance
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Balance Operator

» Control variable transformation
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Conventional Hybrid

n Hybrid B= vclim Bclim + ven Ben

* Using the controls z¢im and ze" (Wang etal 2009)

J(chim,zen _ %(chim )Tzclim + %(zen )Tzen + %Zk(dk _ HkAXk )T (Rk)—1dk _ HkAXk)
(Kleist and Ide 2015)
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Bclim — Uclim (Uclim)T Ben = Xenyen (Uen)T(Xen)T

* Balance operator I : applied to only Ax“™ not on Axe",
» Spatial localization: included as recursive filter (Purser and Wu, 2003ab)
_ clim clim
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Ensemble Application: Hybrid EnVar

= Approach
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 Balance operator I is applied to both Ax“mto Axe",
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Ensemble Application: Spatial Localization

= Hybrid EnVar: B localization
Global increment
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Axenk _ FBen Zm:1Fenz(en (Z?rr,]»,))k

o
m)
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* F°" propagres increment info
spatially regardless of the location
of y°,

- Information propagation (2-way)
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= LETKF: R localization

Local increment in z
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Summary on Formulation

= Balance operators represent the physical relationships between variables.

= Balance operators in ensemble data assimilation allow the localization to be
performed on the unbalanced covariances, preserving the balanced

covariances.

= The type of localization matters:

* Model space localization (EnVar) allows a two-way propagation of
information.

* Observation space localization (LETKF) only allows a one-way propagation
of information



Model Description

= Simplified Parameterizations, primitivE-Equation Dynamics (SPEEDY)
(Moltani, 2003)
* Global atmospheric general circulation model of intermediate complexity
* Version 41, provided by F. Kucharski
— 3 horizontal resolution options: T30, T47, T63
— 8 vertical levels
= SPEEDY DA System: 3DVar, LETKF, hourly put by T. Miyoshi & S. Greybush
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Model Bias in Stratosphere

T63 T30

Nature T63, u(sig=0.02), JJA Nature T30, u(sig=0.02), JJA
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= Stratospheric dynamics highly damped for higher resolution model due to
the choice of diffusion coefficient.

= Model biases

* Stronger in high wavenumber spectral components and cause the model
to be unstable.

* Model bias correction schemes can be helpful (not applied in this work.)
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Balance OperatorI: Ax = Iz
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= SPEEDY has realistic balance operator I'in comparison with GFS

* Example: Q for Ax, = QAx,+Ax,"
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DA Setup

= Configuration
e CTL: Control without balance operator I' operated on ensemble
e BAL: Balance Ensemble DA with balance operator T

= DA schemes
* Hybrid 4DEnVar: Model space localization with I
e ADLETKEF: Obs space localization without I

= Experiments
* Single obs impact tests
— T at the lowest level & at the time of analysis

— with B" =1 for 4DEnVar direct comparison of space localization
schemes

* Cycling experiments
- NR: T63
— DA system: T30



Single T Obs Impact Tests

= EnVar (B<™,Be" )=(0,1): Model space localization
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Single Obs Impact Tests

= LETKF: Obs space localization using the same ensemble T - Contoured
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Single Observation Impact Tests

= BAL cases for upper air Tusing T T - Contoured

J - Shaded
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Cycling Experiments

= Observing system

* Radiosonde: (u, v, T) full profile
& g bottom four levels

e SeaWinds: (u, v) at lowest level

e AIRS: T full profile & g bottom
four levels
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= DA System

* Hybrid with (B<™,e")=(10%,90%)

e Ensemble Size: 20 members

* |nflation: Fixed at 8%

* Experiment length: 2 years (January

1982 — January 1984)

Observation Type Observation Error
Radiosonde

u, v 1m/s
T 1K
P 100 Pa
q 10“ kg/kg

atellite

u, v 1.5 m/s
T 2 K
q 2x10* kg/kg




Cycling Experiments

= Metrics for evaluation of the OSSE Experiments

» Balance (surface pressure tendency)

* Analysis skills (RMSE)

* Forecast skills (Anomaly Correlations)



Measure of Balance

" Global p . tendency
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 Significantly reduced in Hybrid case
* Practically unchanged in LETKF case (not shown)



Analysis Skills

Hybrid

Analysis RMSE, Psi, Global
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* Significant positive impact where I works in full column ({ and T7)
* Negative impact on ) in stratosphere where the model bias is prominent




Forecast Skill

= Hybrid J T

Anomaly Correlation by Forecast Day, T, BAL — CTL

Anomaly Correlation by Forecast Day, Psi, BAL — CTL
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Analysis Skill

= LETKF

Analysis RMSE, Psi, Global
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Forecast Skill

= LETKF T

o Stratospheric improvement is Anomaly Correlation by Forecast Day, T, BAL — CTL

dominated by the southern .,
polar region.
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Anomaly Correlation Difference

Forecast Skill
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— is significant
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— amplified for regions where the balance operator has a greater impact



Summary

= Balance operator
* A balance operator was applied to two ensemble DA schemes: Hybrid
4DEnVar and LETKF.

* The type of spatial localization impacts the effectiveness of the balance
operator, with the Hybrid 4DEnVar showing greater improvements than
the LETKF.

= Variable localization

* Two forms of variable localization (VM, VO) were formulated within three
ensemble DA schemes (EnSRF, LETKF, EnVar).

* The form of variable localization makes a larger difference in application
than the DA scheme.

= Qverall

e Construction of the background error covariance is critical to model
performance.

* The form of localization, either model space or observation space, is
significant for many applications.





