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Motivation

§ Observations	are	not	perfect	fit	to	model	or	real	atmosphere,	due	to

• Instrument	error
• Representativeness
• Observation	operator

Imbalance	in	analysis

=	imbalance	in	initial	conditions	(dynamical	inconsistency)

§ Production	of	fast	moving	gravity	waves	which	degrades	the	forecast.

Balances	and	the	relationship	between	variables	need	to	be	
properly	represented	in	order	to	produce	a	skillful	forecast.



Incorporating	Balance

§ Var	approach
• Strong	constraints	
• Weak	constrains	
- Additional	penalty	in	the	cost	function	(Courtier	and	Talagrand,	1990;	
Gauthier	and	Thepaut,	2001;	Wee	and	Kuo,	2004)

- Application	of	balance	operator	Γ and	apply	variable	localization
(Lorenc	et	al.,	2003;	Parrish	and	Derber,	1992;	Wu	et	al.,	2002)

§ Ensemble	approach
• Underlying	assumption:	dynamical	estimation	of	the	correlation	
maintains	balance.

• Challenge:	Spatial	localization	to	suppress	spurious	sampling	errors
- using	the	same	length	scale	for	all	variables
- balanced	and	umblanced	variables	may	have	different	correlation	
length	scale.



Objectives

§ Formulate	ensemble	data	assimilation	with	balance	operator	using	variable	
localization	as	in	3D/4D-Var

§ Demonstrate	the	interference	of	balance	operator	with
• Model-space	spatial	localization
• Observation-space	spatial	localization

§ Evaluate	the	impact	through	the	OSSEs	using	SPEEDY	model



Practical	Data	Assimilation

§ Representation	of	uncertainty	by	error	covariance	matrix
• Background	given	by	forecast):	 xb with		B
• Observation	with	known	y=h(x):	 yo with	R

§ Optimization	(in	incremental	form:	Δx =	x – xb using	d=yo -h(xb)

• Variational	methods	(3DVar,	4DVar)	=	numerically	solve	for	Δx
• Sequential	methods	(OI,	EnKF)	 =	use	analytical	form	of	Δx

§ Analysis
- State: Δxa =	Kd
- Error	covariance:				A=(I - KH) A with	K	=	BHT(HBHT+R)-1

or	 K	=	AHTR-1								with	 A	=	(B-1+HTR-1H)-1	

   
J(Δx) = 1

2
ΔxTB−1Δx + 1

2
(d−HΔx)T R−1(d−HΔx)

Background	(Forecast) Observations
H:	Linearized	obs	operator	h(x)



Balance	Operator

§ Provides	multivariate	correlation	in	B	[control	variable	localization]	based	
on	physical	relationship

§ Conventionally	present	in	Var	schemes	through	the	empirical	regression	
coefficients

Following	Wu	et	al	(2002)
Δx =	Δxu +	Δxbalance

G for	T at	sigma=0.34
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Balance	Operator	

§ Control	variable	transformation
Δx	 =		Γ	z

• Role	of	Γ
- Γ:		Δxψ

- ΓT:																			Δxψ
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Conventional	Hybrid

§ Hybrid	B	=	γclim Bclim +	γen Ben

• Using	the	controls	zclim and		zen	(Wang	etal	2009)

climatology ensemble
Bclim	 =		Uclim		(Uclim)T	 Ben	 =		XenUen		(Uen)T(Xen)T	

• Balance	operator	Γ :	applied	to	only	Δxclim	not	on	Δxenk
• Spatial	localization:	included	as	recursive	filter	(Purser	and	Wu,	2003ab)
- Uclim	for	Δxclim	

- Uen for	Δxen [Fen :	recursive	filter]

   
J(zclim,zen) = 1

2
(zclim)T zclim + 1

2
(zen)T zen + 1

2
(dk −HkΔxk )T (Rk )−1

k∑ dk −HkΔxk )

    Δxk = βclimΓUclimzclim + βen Fen
m=1

M∑ z(m)
en ! (X(m)

en )k

(Kleist	and	Ide	2015)	

   

Uen =
Fen 0 0
0 ! 0
0 0 Fen

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Ensemble	Application:	Hybrid	EnVar

§ Approach

• Balance	operator	Γ is	applied	to	both	Δxclim	to	Δxenk
• Spatial	localization									is	applied	onto	unbalanced	part	in	ensemble

    Δxk = βclimΓUclimzclim + βen Fen
m=1
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en ! (X(m)
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Ensemble	Application:	Spatial	Localization

§ Hybrid	EnVar:	B localization
Global	increment

• Zen(m) contain	ΓT

• propagres	increment	info	
spatially	regardless	of	the	location	
of	yok

à Information	propagation	(2-way)

- Γ:		Δxψ

- ΓT:															 Δxψ

§ LETKF:	R localization
Local	increment	in	z

• wen
(m) contains	(ρoR)-1	 after	ΓT

• (ρoR)-1=0	away	from	yok prohibits	
obs	info	to	propagate	regardless	
of	variable	types

à Information	propagation	(1way)

- Γ:		Δxψ

    Δxen
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Summary	on	Formulation

§ Balance	operators	represent	the	physical	relationships	between	variables.

§ Balance	operators	in	ensemble	data	assimilation	allow	the	localization	to	be	
performed	on	the	unbalanced	covariances,	preserving	the	balanced	
covariances.

§ The	type	of	localization	matters:
• Model	space	localization	(EnVar)	allows	a	two-way	propagation	of	
information.

• Observation	space	localization	(LETKF)	only	allows	a	one-way	propagation	
of	information



Model	Description

§ Simplified	Parameterizations,	primitivE-Equation	Dynamics	(SPEEDY)
(Moltani,	2003)

• Global	atmospheric	general	circulation	model	of	intermediate	complexity
• Version	41,	provided	by	F.	Kucharski
- 3	horizontal	resolution	options:	 T30,	T47,	T63
- 8	vertical	levels

§ SPEEDY	DA	System:	3DVar,	LETKF,	hourly	put	by	T.	Miyoshi	&	S.	Greybush



Model	Bias	in	Stratosphere

§ Stratospheric	dynamics	highly	damped	for	higher	resolution	model	due	to	
the	choice	of	diffusion	coefficient.

§ Model	biases
• Stronger	in	high	wavenumber	spectral	components	and	cause	the	model	
to	be	unstable.	

• Model	bias	correction	schemes	can	be	helpful	(not	applied	in	this	work.)

T63 T30



Balance	Operator	Γ: Δx	 =		Γ	z

§ SPEEDY	has	realistic	balance	operator	Γ in	comparison	with	GFS
• Example:	Ω for	Δxp =	ΩΔxψ+Δxpu

T30	SPEEDY T574	GFS



DA	Setup

§ Configuration
• CTL:	Control	without	balance	operator	Γ operated	on	ensemble
• BAL:	Balance	Ensemble	DA	with	balance	operator	Γ

§ DA	schemes
• Hybrid	4DEnVar:	 Model	space	localization	 with	ΓT

• 4DLETKF: Obs	space	localization without	ΓT

§ Experiments
• Single	obs	impact	tests
- T at	the	lowest	level	&	at	the	time	of	analysis
- with	βen =1	for	4DEnVar	direct	comparison	of	space	localization	
schemes

• Cycling	experiments
- NR: T63	
- DA	system:		T30



Single	T Obs	Impact	Tests

§ EnVar (βclim,βen )=(0,1):	Model	space	localization

• Two	way	adjustment
- Tà ψ
- ψà T

CTL BAL

T - Contoured
ψ - Shaded



Single	Obs	Impact	Tests

§ LETKF:	Obs	space	localization	using	the	same	ensemble

• One	way	adjustment
- Tà ψ

CTL BAL

T - Contoured
ψ - Shaded



Single	Observation	Impact	Tests

§ BAL	cases		for	upper	air	T	using	Γ

EnVar LETKF

T - Contoured
ψ - Shaded



Cycling	Experiments

§ Observing	system
• Radiosonde:	(u,	v,	T)	full	profile	
&	q bottom	four	levels

• SeaWinds:	(u,	v)	at	lowest	level
• AIRS:	T full	profile	&	q bottom	
four	levels

§ DA	System
• Hybrid	with	(βclim,βen)=(10%,90%)

• Ensemble	Size:	20	members

• Inflation:		Fixed	at	8%	

• Experiment	length:	2	years	(January	
1982	– January	1984)

Observation	Type Observation	Error
Radiosonde

u, v 1	m/s
T 1	K
P 100	Pa
q 10-4 kg/kg

Satellite
u, v 1.5	m/s
T 2 K
q 2x10-4 kg/kg



Cycling	Experiments

§ Metrics	for	evaluation	of	the	OSSE	Experiments

• Balance	(surface	pressure	tendency)

• Analysis	skills	(RMSE)

• Forecast	skills	(Anomaly	Correlations)



Measure	of	Balance

§ Global	psfc tendency	

• Significantly	reduced	in	Hybrid	case
• Practically	unchanged	in	LETKF	case	(not	shown)

BAL	– CTL
>	0	BAL	Increases	Imbalance
<	0	BAL		Reduces		Imbalance



Analysis	Skills

§ Hybrid

• Significant	positive	impact	where	Γ works	in	full	column	(ψ	and	T)
• Negative	impact	on	ψ	in	stratosphere	where	the	model	bias	is	prominent

ψ χ T



Forecast	Skill

§ Hybrid

• Forecast	skill	for	T and	tropospheric	ψ are	improved	for	all	forecast	
lengths.

Tψ

10
days

10
days

Forecast	Day

BAL	– CTL
>	0	BAL	Improves
<	0	BAL	Degrades



Analysis	Skill

§ LETKF

• Negative	impact	on	ψ may	arise	through	model	integration
• Negative	impact	on	T due	to	Γ the	effect	of		to	move	analysis	away	from	
obs

ψ χ T



Forecast	Skill

§ LETKF
• Stratospheric	improvement	is	

dominated	by	the	southern	
polar	region.

• The	forecast	skill	is	degraded	
for	short	forecast	lead	times	
because	T adjusts	to	ψ.

• At	longer	lead	times,	the	
forecast	skill	is	improved.

• Is	the	improvement	due	to	the	
balance	operator?

T

10
days

Forecast	Day

BAL	– CTL
>	0	BAL	Improves
<	0	BAL	Degrades



Forecast	Skill

§ LETKF

• Transition	from	negative	to	positive	skill	
- is	significant
- amplified	for	regions	where	the	balance	operator	has	a	greater	impact

GL SH



Summary

§ Balance	operator
• A	balance	operator	was	applied	to	two	ensemble	DA	schemes:	Hybrid	
4DEnVar	and	LETKF.

• The	type	of	spatial	localization	impacts	the	effectiveness	of	the	balance	
operator,	with	the	Hybrid	4DEnVar	showing	greater	improvements	than	
the	LETKF.

§ Variable	localization
• Two	forms	of	variable	localization	(VM,	VO)	were	formulated	within	three	
ensemble	DA	schemes	(EnSRF,	LETKF,	EnVar).

• The	form	of	variable	localization	makes	a	larger	difference	in	application	
than	the	DA	scheme.

§ Overall
• Construction	of	the	background	error	covariance	is	critical	to	model	
performance.

• The	form	of	localization,	either	model	space	or	observation	space,	is	
significant	for	many	applications.




