
Forecasting with Reservoir Computing

Brian Hunt, Zhixin Lu
Michelle Girvan, Edward Ott, Jaideep Pathak

University of Maryland

We are grateful for funding from DARPA and ARO.



Machine Learning

• Machine learning algorithms are trained with data to
perform a particular task, such as classification.

• In most applications, the task is static; training data is
a set of input-output pairs.

• Starting from generic input-output rules, training
means choosing the parameters of these rules to
optimize the difference between the actual outputs
and the desired outputs.

• Reservoir computing is a type of machine learning
well suited to dynamic tasks, mapping an input time
series to an output time series.



Our Goals

• We seek to use reservoir computing to create an ad
hoc model, capable of forecasting or data
assimilation, based only on a finite-time sample
(training data) from a dynamical system.

• We are interested in two tasks for our forecast model:

• Predict “weather”: Predict future measurements, at
least in near future.

• Learn “climate”: Compute arbitrarily long times series
that mimic the system that generated the data.

• We also can create an analysis model to infer
unmeasured variables from measured variables.



Reservoir Computing

• A reservoir is a recurrent neural network whose
internal parameters are not adjusted to fit the data for
a particular task.

• Train the reservoir by feeding it an input time series
u(t) and fitting a linear function of the reservoir state
variables r(t) to a desired output time series v(t).

• Goal: train the reservoir to estimate future values of
the desired output from future values of the input.

• This approach was proposed as Echo State
Networks (Jaeger 2001) and Liquid State Machines
(Maass, Natschlaeger, Markram 2002); see http:

//www.scholarpedia.org/article/Echo_state_network

http://www.scholarpedia.org/article/Echo_state_network
http://www.scholarpedia.org/article/Echo_state_network


Reservoir for Training and Inference
Win M Wout

reservoir state r(t)

input output
u(t) v̂(t)

Matrices Win and M are chosen randomly in advance



Continuous-Time Jaeger ESN

• Listen: βdr/dt = −r(t) + tanh[Mr(t) + Winu(t)]

• For training, we choose β to match the input time
scale and we listen for −τ ≤ t ≤ T .

• Here τ is a transient time, and T is the training time
period.

• Fit: Find the matrix Wout such that v̂(t) = Woutr(t)
least-squares minimizes the residuals v̂(t)− v(t) for
0 ≤ t ≤ T .

• To train a forecast model, we let v(t) = u(t).



Forecast Model for t > T

Predict: βdr/dt = −r(t) + tanh[Mr(t) + WinWoutr(t)]

input output
û(t) Woutr(t)



Example: Lorenz System

• We generated and tried to predict a trajectory of the
Lorenz system:
dx
dt

= 10(y−x),
dy
dt

= x(28−z)−y ,
dz
dt

= xy+8z/3.

• Listening input: u(t) = [x(t), y(t), z(t)]T for
forecasting; for inference, u(t) = x(t) and
v(t) = [y(t), z(t)]T .

• After a transient time τ = 100, we train the reservoir
for time T = 60.

• Technical note: To perform the fit to z(t), we squared
some of the coordinates of r(t) before performing
linear regression.



Reservoir Parameters

• We use a reservoir of 2000 nodes, using random
(Erdös-Rényi) connections with an average degree of
40; thus, M is a sparse matrix (2% nonzero entries).

• Connection strengths (nonzero elements of M) are
chosen from a uniform distribution on [−1,1]; then M
is rescaled so that the magnitude of its largest
eigenvalue is 0.9.

• Each row of Win has one nonzero element, chosen
from a uniform distribution on [−1,1], and scaled by a
parameter w = 0.11.



Results for Inference and Forecasting

• For our analysis/inference model, we use x(t) as
input during both training and operation. We train the
reservoir to output approximations to y(t) and z(t).
Results shown on next three slides.

• For our forecast model, we input x(t), y(t), and z(t)
during training. We train the model output to
approximate the input. After training, the model runs
autonomously with feedback replacing input. Results
shown after next three slides.



Reservoir input x(t) for t > T



Inferred y(t) for t > T



Inferred z(t) for t > T



Actual and Predicted z(t)

0 5 10 15 20
0

10

20

30

40

t − T

z



Actual and Predicted Attractors

0

10

20

30

40

50

-20
0

3020 20100-10-20-30

0

10

20

30

40

50

-20
0

3020 20100-10-20-30

z

y

x



Poincaré Section

25 30 35 40 45 50
25

30

35

40

45

50

zmax
n

Actual Predicted

zmax
n+1



Concluding Remarks

• Reservoir forecasting is simple to implement and
capable of learning the dynamics behind a
low-dimensional chaotic time series from a modest
amount of data.

• The size of the reservoir must be large compared to
the dimensionality of the dynamics to be modeled;
however, large reservoirs can be implemented in
hardware (e.g., FPGAs).

• We are working on performing the tasks described in
this talk for high-dimensional, spatially extended
systems using a collection of local reservoirs running
in parallel.


