Forecasting with Reservoir Computing

Brian Hunt, Zhixin Lu Michelle Girvan, Edward Ott, Jaideep Pathak University of Maryland

We are grateful for funding from DARPA and ARO.

Machine Learning

- Machine learning algorithms are trained with data to perform a particular task, such as classification.
- In most applications, the task is static; training data is a set of input-output pairs.
- Starting from generic input-output rules, training means choosing the parameters of these rules to optimize the difference between the actual outputs and the desired outputs.
- Reservoir computing is a type of machine learning well suited to dynamic tasks, mapping an input time series to an output time series.

Our Goals

- We seek to use reservoir computing to create an ad hoc model, capable of forecasting or data assimilation, based only on a finite-time sample (training data) from a dynamical system.
- We are interested in two tasks for our forecast model:
- Predict "weather": Predict future measurements, at least in near future.
- Learn "climate": Compute arbitrarily long times series that mimic the system that generated the data.
- We also can create an analysis model to infer unmeasured variables from measured variables.

Reservoir Computing

- A reservoir is a recurrent neural network whose internal parameters are not adjusted to fit the data for a particular task.
- Train the reservoir by feeding it an input time series u(t) and fitting a linear function of the reservoir state variables r(t) to a desired output time series v(t).
- Goal: train the reservoir to estimate future values of the desired output from future values of the input.
- This approach was proposed as Echo State Networks (Jaeger 2001) and Liquid State Machines (Maass, Natschlaeger, Markram 2002); see http: //www.scholarpedia.org/article/Echo_state_network

Reservoir for Training and Inference

Matrices W_{in} and M are chosen randomly in advance

・ コット (雪) (小田) (コット 日)

Continuous-Time Jaeger ESN

- Listen: $\beta d\mathbf{r}/dt = -\mathbf{r}(t) + \tanh[M\mathbf{r}(t) + W_{in}\mathbf{u}(t)]$
- For training, we choose β to match the input time scale and we listen for −τ ≤ t ≤ T.
- Here *τ* is a transient time, and *T* is the training time period.
- Fit: Find the matrix W_{out} such that $\hat{\mathbf{v}}(t) = W_{out}\mathbf{r}(t)$ least-squares minimizes the residuals $\hat{\mathbf{v}}(t) - \mathbf{v}(t)$ for $0 \le t \le T$.

• To train a forecast model, we let $\mathbf{v}(t) = \mathbf{u}(t)$.

Forecast Model for t > T

Predict: $\beta d\mathbf{r}/dt = -\mathbf{r}(t) + \tanh[M\mathbf{r}(t) + W_{in}W_{out}\mathbf{r}(t)]$

Example: Lorenz System

• We generated and tried to predict a trajectory of the Lorenz system:

$$\frac{dx}{dt} = 10(y-x), \quad \frac{dy}{dt} = x(28-z)-y, \quad \frac{dz}{dt} = xy+8z/3.$$

- Listening input: $\mathbf{u}(t) = [x(t), y(t), z(t)]^T$ for forecasting; for inference, $\mathbf{u}(t) = x(t)$ and $\mathbf{v}(t) = [y(t), z(t)]^T$.
- After a transient time $\tau = 100$, we train the reservoir for time T = 60.
- Technical note: To perform the fit to z(t), we squared some of the coordinates of r(t) before performing linear regression.

Reservoir Parameters

- We use a reservoir of 2000 nodes, using random (Erdös-Rényi) connections with an average degree of 40; thus, *M* is a sparse matrix (2% nonzero entries).
- Connection strengths (nonzero elements of *M*) are chosen from a uniform distribution on [-1, 1]; then *M* is rescaled so that the magnitude of its largest eigenvalue is 0.9.
- Each row of W_{in} has one nonzero element, chosen from a uniform distribution on [-1, 1], and scaled by a parameter w = 0.11.

(日) (日) (日) (日) (日) (日) (日)

Results for Inference and Forecasting

 For our analysis/inference model, we use x(t) as input during both training and operation. We train the reservoir to output approximations to y(t) and z(t). Results shown on next three slides.

• For our forecast model, we input *x*(*t*), *y*(*t*), and *z*(*t*) during training. We train the model output to approximate the input. After training, the model runs autonomously with feedback replacing input. Results shown after next three slides.

Reservoir input x(t) for t > T

▲□▶▲圖▶▲≣▶▲≣▶ = 更 - のへで

Inferred y(t) for t > T

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

Inferred z(t) for t > T

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 … の Q @

Actual and Predicted z(t)

▲口を▲聞を▲回を▲回を 回 ろくの

Actual and Predicted Attractors

Poincaré Section

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Concluding Remarks

- Reservoir forecasting is simple to implement and capable of learning the dynamics behind a low-dimensional chaotic time series from a modest amount of data.
- The size of the reservoir must be large compared to the dimensionality of the dynamics to be modeled; however, large reservoirs can be implemented in hardware (e.g., FPGAs).
- We are working on performing the tasks described in this talk for high-dimensional, spatially extended systems using a collection of local reservoirs running in parallel.