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> Visible Spectrum = primarily measures snow extent
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Need for computationally efficient observation operator
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Importance of Snow

Snow is a significant contributor to terrestrial freshwater supply

» Vital resource for ~billion people worldwide

Motivation

Not exactly sure how much snow is out there
» Significant uncertainty
o Leverage suite of remotely-sensed satellite observations

> Visible Spectrum = primarily measures snow extent
» Microwave Spectrum = primarily measures snow mass
» Gravimetry = large spatiotemporal resolution, not an imager

Need for computationally efficient observation operator

» Eventual use in data assimilation framework

» v =y, + K [ Zn, - hy;) ]
N~ N~ ~ ~~ N——
posterior prior  Kalmangain o pcervation prediction via

via satellite “machine learning”

Goal is to improve SWE estimation at regional and continental
scales based on conditional probability, p(y|z)
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Science and mission planning questions:

Objectives ® What observational records are needed (in space and time) to
maximize terrestrial snow experimental utility?

@® How might observations be coordinated (in space and time) to
maximize this utility?

©® What is the additional utility associated with an additional
observation?

@ How can future mission costs be minimized while ensuring
Science requirements are fulfilled?
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g —— FOV=15deg

; FOV =30deg

£ ——— FOV=45deg

g

£ e Explore trade-off between
3 engineering and science

3

“ > > Field-of-View (FOV)?

Total Number of Satellites [integer value]

> Platform altitude?
> Repeat cycle?
>

Tredteofif Spme Single platform vs.

A [— Altitude =400 km constellation?

g | |—— Altitude=700km » Orbital configuration(s)?
2 Altitude = 1000 km

£ e How do we get the most

é scientific bang for our buck?
2

&

Y

Instrument Elevation Angle [arbitrary units]
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e Scenario 1: Benchmark Analysis

> Passive MW Assimilation only
e Scenario 2: Comparative Analysis

» Passive MW vs. Active MW vs. LIDAR
e Scenario 3: Multi-sensor Analysis

> single-sensor platform
» multi-sensor platform
» constellation of sensors

Experiments
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o Global snow mission will require evidence of achievable science
via OSSE ... or some other means

e NASA LIS provides “nature run" plus assimilation framework
e TAT-C provides spatiotemporal sub-sampling of observations,
including cost estimates and risk assessments

e Machine learning maps model state(s) into observation space
(i.e., Ty and oy)
» Enables integration of Ty, 0o, and dh in geophysical realm (i.e.,
SWE and snow depth)
» Multiple frequencies/polarizations/observations allow for
Conclusions flexibility and modularity in DA framework

e Snow OSSE is on-going — open to ideas + suggestions!
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Questions and/or Comments?
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For parameters C' > 0 and € > 0, the standard (primal) form is:

N |

e v TR
( )>+5—ZZS€+€1
—(w-o(x )>—5<€+5
>0,i=1,2,.

subject to (

fz,é

where m is the available number of T}, measurements in time (for a
given location in space), z; is a T, measurement at time ¢, and £ and
£* are slack variables.

Extra Slides
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SVM Mathematical Framework (2 of 2)

Primal optimization is commonly solved in dual form as:

minimize % Z (i —af) (aj - 04;) (p(x:) - P(x5))

a;, af

subject to Z (; — ) =0,

where a; and ] are Lagrangian multipliers, (¢(x;) - ¢(x;)) is the
inner dot product of ¢(x;) and ¢(x;), ¢ is the specified error
tolerance, and C'is a positive constant that dictates a penalized loss
during training.
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