

UMD-PSU DA 2017

Bart Forman

Snow

Observation

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments Conclusions

Extra Slides

Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

Co-authors: **Sujay Kumar¹**, **Jacqueline Le Moigne²**, and **Sreeja Nag^{2,3}** =NASA CSFC - Hydrological Sciences; 2=NASA CSFC - Software Engineering; 3=Bay Area Environmental Research Institute

Bart Forman

Assistant Professor, University of Maryland **The Deborah J. Goodings Professor of Global Sustainability** Department of Civil and Environmental Engineering

June 27th, 2017

UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

• Snow is a significant contributor to terrestrial freshwater supply

- Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Leverage suite of remotely-sensed satellite observations
 - Visible Spectrum \Rightarrow primarily measures snow extent
 - ▶ Microwave Spectrum ⇒ primarily measures snow mass
 - Gravimetry \Rightarrow large spatiotemporal resolution, <u>not</u> an imager
- Need for computationally efficient observation operator
 - Eventual use in data assimilation framework

- Goal is to improve SWE estimation at regional and continental scales based on conditional probability, $p(y \vert z)$

Bart Forman

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
 - Not exactly sure how much snow is out there
 - Significant uncertainty
 - Leverage suite of remotely-sensed satellite observations

 - Microwave Spectrum \Rightarrow primarily measures snow mass
 - Need for computationally efficient observation operator

• Goal is to improve SWE estimation at regional and continental

UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
 - Not exactly sure how much snow is out there
 - Significant uncertainty
 - Leverage suite of remotely-sensed satellite observations
 - ► Visible Spectrum ⇒ primarily measures snow extent
 - ► Microwave Spectrum ⇒ primarily measures snow mass
 - Gravimetry \Rightarrow large spatiotemporal resolution, <u>not</u> an imager
 - Need for computationally efficient observation operator
 - Eventual use in data assimilation framework
 - $\mathbf{y}_i^+ = \mathbf{y}_i^- + \mathbf{y}_i^-$

servation satellite

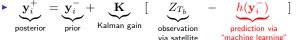
- "machine learning"
- Goal is to improve SWE estimation at regional and continental scales based on conditional probability, $p(y \vert z)$

UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
 - Not exactly sure how much snow is out there
 - Significant uncertainty
 - Leverage suite of remotely-sensed satellite observations
 - ► Visible Spectrum ⇒ primarily measures snow extent
 - ► Microwave Spectrum ⇒ primarily measures snow mass
 - Gravimetry \Rightarrow large spatiotemporal resolution, <u>not</u> an imager
 - Need for computationally efficient observation operator
 - Eventual use in data assimilation framework



- Goal is to improve SWE estimation at regional and continental scales based on conditional probability, $p(y \vert z)$

UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Snow is a significant contributor to terrestrial freshwater supply
 - ► Vital resource for ~billion people worldwide
 - Not exactly sure how much snow is out there
 - Significant uncertainty
- Leverage suite of remotely-sensed satellite observations
 - Visible Spectrum \Rightarrow primarily measures snow extent
 - ► Microwave Spectrum ⇒ primarily measures snow mass
 - Gravimetry \Rightarrow large spatiotemporal resolution, <u>not</u> an imager
- Need for computationally efficient observation operator
 - Eventual use in data assimilation framework



- Goal is to improve SWE estimation at regional and continental scales based on conditional probability, $p(y \vert z)$

UMD-PSU DA 2017

Bart Forman

Snow

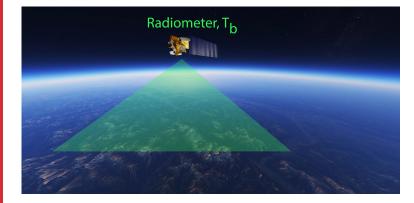
Motivation

Observations

- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

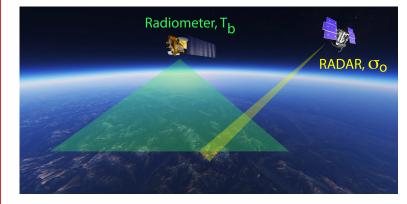
UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- _____
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- conclusions
- Extra Slides



UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments Conclusions
- Extra Slides



UMD-PSU D/ 2017

Bart Forman

Snow

Motivation

Observations

Objective

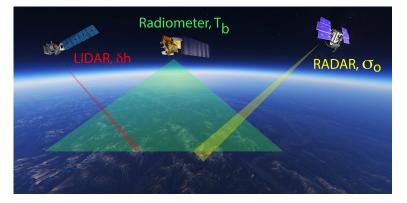
OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments Conclusions

Extra Slides



UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- How can future mission costs be minimized while ensuring Science requirements are fulfilled?

UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- ④ How can future mission costs be minimized while ensuring Science requirements are fulfilled?

UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- ④ How can future mission costs be minimized while ensuring Science requirements are fulfilled?

UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

- What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
- How might observations be coordinated (in space and time) to maximize this utility?
- What is the additional utility associated with an additional observation?
- How can future mission costs be minimized while ensuring Science requirements are fulfilled?

UMD-PSU DA 2017

Bart Forman

Snow

Motivation

Observations

Objectives

OSSI

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

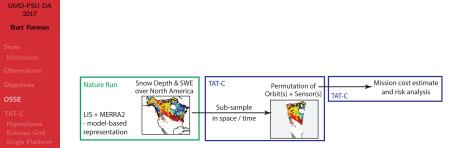
Nature Run Snow Dep over North LIS + MERRA2 - model-based representation

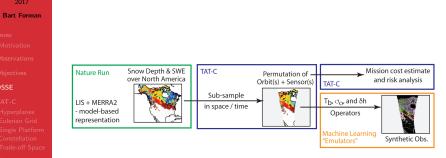
Bart Forman

- Snow
- Motivation
- Observations
- Objectives

OSSE

- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learnin Emulators Variability
- Experiments
- Conclusions
- Extra Slides





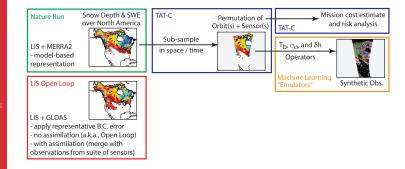
- Machine Learni Emulators Variability
- Experiments
- Conclusions
- Extra Slides

Bart Forman

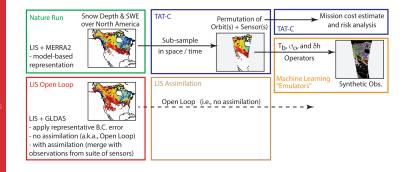
- Snow
- Motivation
- Observations
- Objectives

OSSE

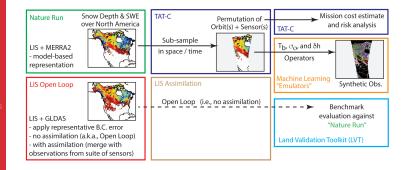
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learnir Emulators Variability Experiments
- Conclusions
- Extra Slides



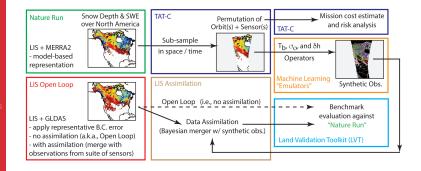
- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learnin, Emulators Variability Experiments
- Conclusions
- Extra Slides



- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learnin, Emulators Variability Experiments
- Conclusions
- Extra Slides



- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

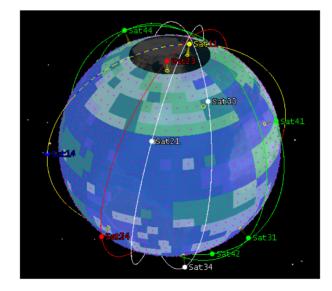


UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objective
- OSSE
- TAT-C

- Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

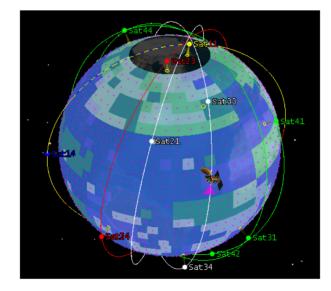


UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objective
- OSSE
- TAT-C

- Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

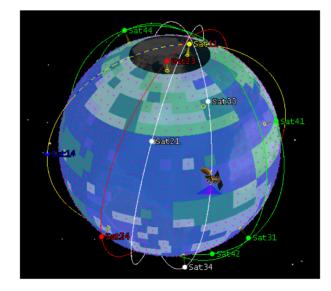


UMD-PSU DA 2017

Bart Forman

- Snow
- Motivatio
- Observations
- Objective
- OSSE
- TAT-C

- Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

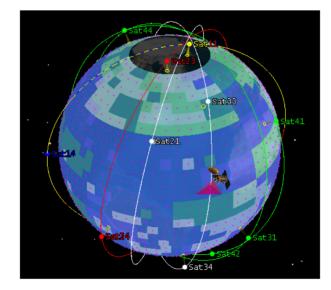


UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objective
- OSSE
- TAT-C

- Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides



UMD-PSU DA

TAT-C Orbital Simulator

2017
Bart Forman
Eulerian Grid

"Comb" Viewing \mapsto Single Platform

UMD-PSU DA 2017
Bart Forman
Single Platform Constellation

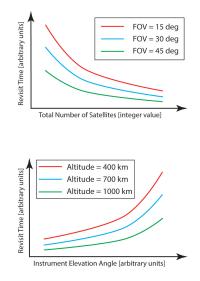
"Comb" Viewing \mapsto Constellation

UMD-PSU DA 2017
Bart Forman
Single Platform Constellation

Trade-off Space: Coverage vs. Resolution

UMD-PSU DA 2017

- Bart Forman
- Snow Motivatio Observatio Objectives
- TAT C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learni Emulators Variability Experiments Conclusions



- Explore trade-off between engineering and science
 - ► Field-of-View (FOV)?
 - Platform altitude?
 - Repeat cycle?
 - Single platform vs. constellation?
 - Orbital configuration(s)?
- How do we get the most scientific bang for our buck?

Machine Learning "Emulators"

UMD-PSU DA 2017

Bart Forman

Snow

moundation

Observations

Objectives

OSSE

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learnin

Emulators

Experiments

Conclusions

Extra Slides

Physically-based Land Surface Model(s)



Xue and Forman, 2015 Remote Sensing of Environ.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

brightness temperature 36 GHz, V-pol 36 GHz, H-pol

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

UMD-PSU DA 2017

Bart Forman

Snow

motivation

Observations

Objective

OSSE

Hyperplanes Eulerian Grid Single Platforn Constellation

Machine Learnin

Emulators

Variability Experiments

Conclusions

Extra Slides

Physically-based Land Surface Model(s)

Xue and Forman, 2015 Remote Sensing of Environ.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

Multi-frequency, Multi-polarization Training Targets

Machine Learning "Emulators"

UMD-PSU DA 2017

Bart Forman

Snow

0

Objectives

USSE

Hyperplanes Eulerian Gri Single Platfo

Constellation Trade-off Space

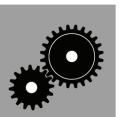
Machine Learnii Emulators

Variability Experiments

Conclusions

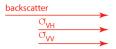
Extra Slides

Physically-based Land Surface Model(s)



Xue and Forman, 2015 *Remote Sensing of Environ*.

Observation Operator (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)



Multi-frequency, Multi-polarization Training Targets

Spatiotemporal Variability

UMD-PSU DA 2017

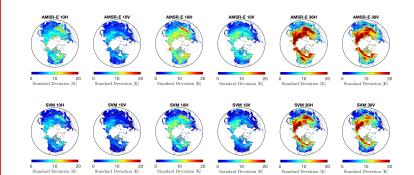
Bart Forman

Snow

- Motivation
- Observations
- Objectives
- ----
- ----
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning

Emulators

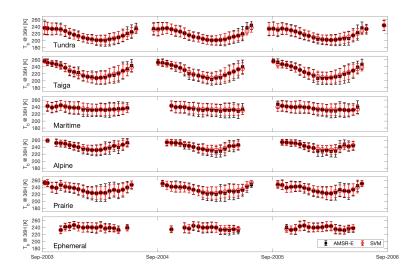
- Variability Experiments
- Conclusions
- Extra Slides



Spatiotemporal Variability

UMD-PSU DA 2017

- Motivation Observations Objectives OSSE TAT-C Hyperplanes Eulerian Grid
- Single Platform Constellation Trade-off Space
- Machine Learr Emulators Variability
- Conclusions
- Extra Slides



Relevancy Scenarios

UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Scenario 1: Benchmark Analysis
 - Passive MW Assimilation only
- Scenario 2: Comparative Analysis
 - Passive MW vs. Active MW vs. LIDAR
- Scenario 3: Multi-sensor Analysis
 - single-sensor platform
 - multi-sensor platform
 - constellation of sensors

UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objective
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Global snow mission will require evidence of achievable science via OSSE ... or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to ideas + suggestions!

UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Global snow mission will require evidence of achievable science via OSSE . . . or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to ideas + suggestions!

UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objective
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Global snow mission will require evidence of achievable science via OSSE . . . or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to ideas + suggestions!

UMD-PSU DA 2017

Bart Forman

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions
- Extra Slides

- Global snow mission will require evidence of achievable science via OSSE ... or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework

Snow OSSE is on-going → open to ideas + suggestions!

UMD-PSU DA 2017

- Snow
- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learninį Emulators Variability Experiments
- Conclusions
- Extra Slides

- Global snow mission will require evidence of achievable science via OSSE ... or some other means
- NASA LIS provides "nature run" plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b , σ_0 , and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework
- Snow OSSE is on-going \longrightarrow open to ideas + suggestions!

UMD-PSU DA 2017

Bart Forman

Snow

- Motivation
- Observations
- Objectives
- OSSE
- TAT-C
- Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space
- Machine Learning Emulators Variability Experiments
- Conclusions

Extra Slides

Thank You. Questions and/or Comments?

Financial support provided by: NASA New Investigator Program (NNX14AI49G) NASA GRACE-FO Science Team (NNX16AF17G) NASA High Mountain Asia Science Team (NNX17AC15G)

High-performance computing support provided by UMD's Division of Information Technology

SVM Mathematical Framework (1 of 2)

UMD-PSU DA 2017

Bart Forman

Snow Motiva

Observation

Objective

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learnir Emulators Variability Experiments

Conclusions

Extra Slides

For parameters C > 0 and $\varepsilon > 0$, the **standard (primal)** form is:

 $\begin{array}{ll} \underset{\mathbf{w}, \, \delta, \, \boldsymbol{\xi}, \, \boldsymbol{\xi}^*}{\text{minimize}} & \quad \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle + C \sum_{i=1}^m \left(\xi_i + \xi_i^* \right) \\ \text{subject to} & \quad \langle \mathbf{w} \cdot \phi(\mathbf{x}_i) \rangle + \delta - z_i \leq \varepsilon + \xi_i \\ & \quad z_i - \langle \mathbf{w} \cdot \phi(\mathbf{x}_i) \rangle - \delta \leq \varepsilon + \xi_i^* \\ & \quad \xi_i, \xi_i^* \geq 0, i = 1, 2, \dots, m. \end{array}$

where m is the available number of T_b measurements in time (for a given location in space), z_i is a T_b measurement at time i, and $\boldsymbol{\xi}$ and $\boldsymbol{\xi}^*$ are slack variables.

SVM Mathematical Framework (2 of 2)

UMD-PSU DA 2017

Bart Forman

Snow Motiva

Observations

Objectives

OSSE

TAT-C

Hyperplanes Eulerian Grid Single Platform Constellation Trade-off Space

Machine Learning Emulators Variability Experiments

Conclusions

Extra Slides

Primal optimization is commonly solved in **dual form** as:

$$\begin{split} \underset{\alpha_{i}, \, \alpha_{i}^{*}}{\text{minimize}} & \quad \frac{1}{2} \sum_{i,j=1}^{m} \left(\alpha_{i} - \alpha_{i}^{*} \right) \left(\alpha_{j} - \alpha_{j}^{*} \right) \left\langle \phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}) \right\rangle \\ & \quad + \varepsilon \sum_{i=1}^{m} \left(\alpha_{i} + \alpha_{i}^{*} \right) - \sum_{i=1}^{m} z_{i} \left(\alpha_{i} - \alpha_{i}^{*} \right) \\ \text{subject to} & \quad \sum_{i=1}^{m} \left(\alpha_{i} - \alpha_{i}^{*} \right) = 0, \\ & \quad \alpha_{i}, \, \alpha_{i}^{*} \in [0, \, C], \, i = 1, 2, \dots, m \end{split}$$

where α_i and α_i^* are Lagrangian multipliers, $\langle \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \rangle$ is the inner dot product of $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$, ε is the specified error tolerance, and C is a positive constant that dictates a penalized loss during training.