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More	than	106 of observations
assimilated	every	6	hours

Non-Radiance	Observing Systems

Satellite Radiances

and more on the way….
Next generation satellites
• 50Xmore	data
• GOES R, S, T, U	and	Himawari 8, 9
Phase array radar
• 60Xmore	data
• USA,	Japan

Massive Amount of Observations

How to efficiently evaluate the impacts of all of them?
(HARRIS CORP)

GOES-R
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Observing System Experiments (OSEs):
• Comparing forecasts w/ and w/o a set of observations
• Direct approach to evaluate the observational impact
• Low discernibility, Computationally expensive

Forecast Sensitivity to Observations (FSO):
• Langland and Baker (2004)
• Computationally	economical
• Require adjoint model	(inconsistent in representing moist processes.)

Ensemble FSO (EFSO):
• Kalnay et al. (2012)
• Estimates impact of each observation all at once
• Computationally economical,	Free of adjoint model
• Require	advection	of localization

Evaluating Observation Impact
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• Quantifies how much each observation improves or
degrades model forecasts.
• A linear mapping from error changes to each	observations.
• Negative	value:	error	reduction/ beneficial observation
• Positive	value:	error	growth/ detrimental observation
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(Kalnay et al., 2012)
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Period (1 month) Jan/10/2012 00Z – Feb/09/2012 18Z
Model GFS T254/T126 L64
DA LETKF/3D-Var Hybrid GSI v2012
Localization cut-
off length

2000 km/ 2 scale heights

Error norm Moist total energy (MTE)
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Experimental Setup
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Case:		Feb/06/2012	18Z
Color:	06hr	MTE	impact	(J/kg)
Size:				Magnitude	of	impact	

Regions	(black	boxes) with clusters
of detrimental	(red)	observations.

Clustered Detrimental Observations
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Detrimental episodes	in	some	observing	systems.
MODIS	polar	winds	is	one	of	the	contributors.

time

06hr System	Total	Impact	(J/kg)

Detrimental Episodes

MODIS	winds
Profiler	winds

Atlas	buoy

Dropsonde

PIBAL
NEXRAD	winds

Aircraft

Radiosonde
GPSRO
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• Prevailing positive innovation bias in U comp.
• Cloud tracking winds (top) and Water vapor tracking
(bottom) resemble each other in both hemisphere

Biases: Innovation and Wind Direction

Beneficial Detrimental

CLOUD	TRK

WATER	VAPOR	(CLR)

WATER	VAPOR	(CLD)

MODIS	Polar	Winds

8



Biases: Innovation and Wind Direction
Geostationary Satellite Winds

JMAWinds

GOES Winds

EU Metsat Winds

• No such biases for Geostationary Satellite Winds
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Adapted from Hotta (2017)

1. Perform EFSO using:
1. 12-hr forecast from t=-6
2. 6-hr forecast from t=0
3. analysis at t=6

2. Determine set of observations at
t=0 to be rejected based on EFSO

3. Repeat the analysis without
those observations.

PQC Algorithm
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1. Hotta (from Hotta 2017	and	Ota	2013)
• Identify forecast error degradation regions
• Perform EFSO w.r.t. those regions for 6-hr impact
• Reject detrimental observations only from the systems that
have net detrimental impact. Case: Feb/06/2012 18Z

Three Data Denial Experiment Methods
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Improved Degraded

06 hr 24 hr

72 hr 96 hr

Feb/06/2012 18Z

Improved regions strengthen and propagate with weather system

1. Hotta Method: Impact on the Forecasts
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(efbeforeQC – efafterQC )/ efbeforeQC x	100	[%]



Three Data Denial Experiment Methods

�e224|0 < �e26|0 < 0

Case:		Feb/06/2012	18Z
Color:	06hr	MTE	impact	(J/kg)
Size:				Magnitude	of	impact	Threshold:	37951 rejected BGM:	287289 rejected

2. Threshold	(THR)
• Compute	global	EFSO	for	06-hr	impact	of	each	observation
• Reject detrimental observations with	a	positive	(detrimental)	
impact larger	than	a	10^-5 (J/kg)	threshold.

3. Beneficial	Growing	Mode	(BGM; reanalysis)
• Inspired	by Trevisan (2010):	
Assimilation	in	Unstable	Subspace	(AUS)
• Compute	the	global EFSO for 06, 24-hr impact
• Assimilate only	when:
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• PQC corrects analysis and
the subsequent forecast.

• All three methods improve
model forecasts on average.

• The BGM	and THR	method
have forecast
improvements larger than
Hottamethod.

Z500 ACC Improvement: THR(blue) v.s. BGM(red):

MTE relative improvement (%)

Offline Experiment: 18 cases

NH SH

TR GL

BGM

THR
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Improvement by cycling PQCmaximizes around 3-5 day forecasts
by accumulated beneficial effect of past PQCs.

Cycling PQC Experiment: 40 cycles
Z500 ACC Improvement: Offline-THR(blue) v.s. Cycling-THR(red)

NH SH

TR GL

Offline

Cycling
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Estimated	PQC correction using same Kalman gain K:
• K	is	actually depending on H, which is	determined by observations

l = 3, · · · , p. Assume further that the analysis obtained by not using the denied

observations can be approximated by the analysis obtained when those observations

coincide with the corresponding background (i.e., the innovation is zero). Let

x̄a,deny
0

be the analysis that would be obtained without using the denied observations.

Then the analysis equation for x̄a,deny
0

can be written as
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Thus, from Eq. (2.1) and the approximate analysis equation Eq. (2.5), the change in
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by
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Similarly, by applying tangent linear approximation to the above equation, the

change in forecast that would occur by not assimilating denied observations can

be estimated by
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(Hotta, 2017)
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(ensemble perturbation of analysis at time 0 in

observation space) is used. As we will see later, this approximation turns out to be

extremely powerful and plays a crucial role in our EFSO and EFSR derivation (see

the next subsection and Section 7.3). Note that, in practical situations where the

ensemble size K is smaller than the number of degrees of freedom of the system, the

sampled covariance 1

K�1
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T must be localized to avoid sampling error. Using

the above approximation, the analysis equation Eq. (2.1) can be approximated by:
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2.2.2.3 Derivation of EFSO formulation

Now we proceed to deriving the EFSO formulation. The formulation presented

here is identical to that of Kalnay et al. (2012), except that they assumed the
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True	correction v.s.
Estimated	correction

PQC corrections: Z500

True	correction Estimated	correction

Very similar pattern

Necessary Redoing Analysis?
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Using GFS-analysis saves 3 hours of waiting
• PQC provides better GDAS-analysis product.
• The real-time GFS-forecast benefits from the PQC done 12 hours
ago and the beneficial impact accumulates over each cycle.

PQC in NCEP Dual Track Analysis
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Adapted from Hotta (2017)



•EFSO is an efficient tool for:
• Identifying detrimental observations
•Online monitoring the impact	on model forecast of
assimilating	each observation.

•PQC, affordable in operation, improves analysis
and the subsequent forecast for up to 5 days.
•PQC-BGM allows doing	assimilation	within	
beneficial growing mode in reanalysis.

Summary
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Thank you very much for your attention



Backup Slides
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Total impact of each observing system
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PQC: reject-threshold
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PQC: reject-number of obs.


